Moran Eye Center, Department of Ophthalmology and Visual Sciences, The University of Utah, Salt Lake City, UT, United States.
Front Neural Circuits. 2018 Nov 14;12:90. doi: 10.3389/fncir.2018.00090. eCollection 2018.
All of retinal neurons, including bipolar cells (BCs), amacrine cells (ACs) and ganglion cells (GCs), display gap junctional coupling. However, coupling varies extensively by . Heterocellular AC coupling is common in many mammalian GC classes. Yet, the topology and functions of coupling networks remains largely undefined. GCs are the least frequent superclass in the inner plexiform layer and the gap junctions mediating GC-to-AC coupling (GC::AC) are sparsely arrayed amidst large cohorts of homocellular AC::AC, BC::BC, GC::GC and heterocellular AC::BC gap junctions. Here, we report quantitative coupling for identified GCs in retinal connectome 1 (RC1), a high resolution (2 nm) transmission electron microscopy-based volume of rabbit retina. These reveal that most GC gap junctions in RC1 are . GC classes lack direct cross-class homocellular coupling with other GCs, despite opportunities via direct membrane contact, while OFF alpha GCs and transient ON directionally selective (DS) GCs are strongly coupled to distinct AC cohorts. Integrated small molecule immunocytochemistry identifies these as GABAergic ACs (γ+ ACs). Multi-hop synaptic queries of RC1 connectome further profile these coupled γ+ ACs. Notably, OFF alpha GCs couple to OFF γ+ ACs and transient ON DS GCs couple to ON γ+ ACs, including a large interstitial amacrine cell, revealing matched ON/OFF photic drive polarities within coupled networks. Furthermore, BC input to these γ+ ACs is tightly matched to the GCs with which they couple. Evaluation of the coupled versus inhibitory targets of the γ+ ACs reveals that in both ON and OFF coupled GC networks these ACs are presynaptic to GC classes that are different than the classes with which they couple. These heterocellular coupling patterns provide a potential mechanism for an excited GC to indirectly inhibit nearby GCs of different classes. Similarly, coupled γ+ ACs engaged in feedback networks can leverage the additional gain of BC synapses in shaping the signaling of downstream targets based on their own selective coupling with GCs. A consequence of coupling is intercellular fluxes of small molecules. GC::AC coupling involves primarily γ+ cells, likely resulting in GABA diffusion into GCs. Surveying GABA signatures in the GC layer across diverse species suggests the majority of vertebrate retinas engage in GC::γ+ AC coupling.
所有视网膜神经元,包括双极细胞 (BCs)、无长突细胞 (ACs) 和节细胞 (GCs),都显示出缝隙连接偶联。然而,偶联的变化范围非常大。在许多哺乳动物 GCs 类中,异细胞 AC 偶联很常见。然而,偶联网络的拓扑结构和功能在很大程度上仍然未知。GCs 是内丛状层中最不常见的超类,介导 GC 到 AC 的缝隙连接 (GC::AC) 很少排列在大量同质的 AC::AC、BC::BC、GC::GC 和异质的 AC::BC 缝隙连接之间。在这里,我们报告了在视网膜连接组 1 (RC1) 中鉴定的 GCs 的定量偶联,RC1 是基于高分辨率 (2nm) 透射电子显微镜的兔视网膜体积。这些发现表明,RC1 中的大多数 GC 缝隙连接都是非功能性的。GC 类缺乏与其他 GCs 的直接跨类同型细胞偶联,尽管有通过直接膜接触的机会,但 OFF alpha GCs 和瞬态 ON 方向选择性 (DS) GCs 与不同的 AC 群体强烈偶联。整合的小分子免疫细胞化学鉴定这些为 GABAergic ACs (γ+ACs)。对 RC1 连接组的多跳突触查询进一步描绘了这些偶联的 γ+ACs。值得注意的是,OFF alpha GCs 与 OFF γ+ACs 偶联,瞬态 ON DS GCs 与 ON γ+ACs 偶联,包括一个大的间质无长突细胞,在偶联网络中揭示了匹配的 ON/OFF 光驱动极性。此外,这些 γ+ACs 的 BC 输入与它们偶联的 GC 紧密匹配。对 γ+AC 的偶联和抑制靶标的评估表明,在 ON 和 OFF 偶联的 GC 网络中,这些 AC 是与它们偶联的 GC 类不同的 GC 类的突触前。这些异质细胞偶联模式为兴奋的 GC 间接抑制不同类别的附近 GC 提供了一种潜在的机制。类似地,参与反馈网络的偶联 γ+AC 可以利用 BC 突触的额外增益,根据它们与 GC 的选择性偶联,来塑造下游靶标的信号。偶联的结果是小分子的细胞间通量。GC::AC 偶联主要涉及 γ+细胞,可能导致 GABA 扩散到 GC 中。在不同物种的 GC 层中对 GABA 特征的调查表明,大多数脊椎动物视网膜都参与了 GC::γ+AC 偶联。