Chodankar Nilesh R, Selvaraj Seenivasan, Ji Su-Hyeon, Kwon Yongchai, Kim Do-Heyoung
School of Chemical Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, South Korea.
Small. 2019 Jan;15(3):e1803716. doi: 10.1002/smll.201803716. Epub 2018 Nov 28.
The large-scale application of supercapacitors (SCs) for portable electronics is restricted by low energy density and cycling stability. To alleviate the limitations, a unique interface engineering strategy is suggested through atomic layer deposition (ALD) and nitrogen plasma. First, commercial carbon cloth (CC) is treated with nitrogen plasma and later inorganic NiCo O (NCO)/NiO core-shell nanowire arrays are deposited on nitrogen plasma-treated CC (NCC) to fabricate the ultrahigh stable SC. An ultrathin layer of NiO deposited on the NCO nanowire arrays via conformal ALD plays a vital role in stabilizing the NCO nanowires for thousands of electrochemical cycles. The optimized NCC/NCO/NiO core-shell electrode exhibits a high specific capacitance of 2439 F g with a remarkable cycling stability (94.2% over 20 000 cycles). Benefiting from these integrated merits, the foldable solid-state SCs are fabricated with excellent NCC/NCO/NiO core-shell nanowire array electrodes. The fabricated SC device delivers a high energy density of 72.32 Wh kg at a specific capacitance of 578 F g , with ultrasmall capacitance decline rate of 0.0003% per cycle over 10 000 charge-discharge cycles. Overall, this strategy offers a new avenue for developing a new-generation high-energy, ultrahigh stable supercapacitor for real-life applications.
超级电容器(SCs)在便携式电子产品中的大规模应用受到低能量密度和循环稳定性的限制。为了缓解这些限制,通过原子层沉积(ALD)和氮等离子体提出了一种独特的界面工程策略。首先,用氮等离子体处理商用碳布(CC),然后在经氮等离子体处理的CC(NCC)上沉积无机NiCo O(NCO)/NiO核壳纳米线阵列,以制造超高稳定性的超级电容器。通过保形ALD沉积在NCO纳米线阵列上的超薄NiO层在使NCO纳米线在数千次电化学循环中保持稳定方面起着至关重要的作用。优化后的NCC/NCO/NiO核壳电极表现出2439 F g的高比电容,具有出色的循环稳定性(在20000次循环中保持94.2%)。受益于这些综合优点,用优异的NCC/NCO/NiO核壳纳米线阵列电极制造了可折叠固态超级电容器。所制造的超级电容器装置在比电容为578 F g时提供72.32 Wh kg的高能量密度,在10000次充放电循环中每循环的电容下降率超小,为0.0003%。总体而言,该策略为开发用于实际应用的新一代高能量、超高稳定性超级电容器提供了一条新途径。