Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany.
Lab Chip. 2018 Dec 18;19(1):98-110. doi: 10.1039/c8lc00977e.
Interspecies interactions inside microbial communities bear a tremendous diversity of complex chemical processes that are by far not understood. Even for simplified, often synthetic systems, the interactions between two microbes are barely revealed in detail. Here, we present a microfluidic co-cultivation platform for the analysis of growth and interactions inside microbial consortia with single-cell resolution. Our device allows the spatial separation of two different microbial organisms inside adjacent microchambers facilitating sufficient exchange of metabolites via connecting nanochannels. Inside the cultivation chambers cell growth can be observed with high spatio-temporal resolution by live-cell imaging. In contrast to conventional approaches, in which single-cell activity is typically fully masked by the average bulk behavior, the small dimensions of the microfluidic cultivation chambers enable accurate environmental control and observation of cellular interactions with full spatio-temporal resolution. Our method enables one to study phenomena in microbial interactions, such as gene transfer or metabolic cross-feeding. We chose two different microbial model systems to demonstrate the wide applicability of the technology. First, we investigated commensalistic interactions between an industrially relevant l-lysine-producing Corynebacterium glutamicum strain and an l-lysine auxotrophic variant of the same species. Spatially separated co-cultivation of both strains resulted in growth of the auxotrophic strain due to secreted l-lysine supplied by the producer strain. As a second example we investigated bacterial conjugation between Escherichia coli S17-1 and Pseudomonas putida KT2440 cells. We could show that direct cell contact is essential for the successful gene transfer via conjugation and was hindered when cells were spatially separated. The presented device lays the foundation for further studies on contactless and contact-based interactions of natural and synthetic microbial communities.
微生物群落内部的种间相互作用具有巨大的多样性,其中包含着许多复杂的化学过程,而这些过程目前还远未被人们所理解。即使是对于简化的、通常是合成的系统,两个微生物之间的相互作用也很难被详细揭示。在这里,我们提出了一种用于分析微生物群落内部生长和相互作用的微流控共培养平台,该平台具有单细胞分辨率。我们的设备允许在相邻微室中对两种不同的微生物进行空间分离,通过连接纳米通道促进足够的代谢物交换。在培养室内,通过活细胞成像可以以高时空分辨率观察细胞生长。与传统方法不同,传统方法中单个细胞的活性通常完全被平均的总体行为所掩盖,微流控培养室的小尺寸使得能够准确控制环境,并以全时空分辨率观察细胞相互作用。我们的方法可以研究微生物相互作用中的现象,例如基因转移或代谢交叉喂养。我们选择了两种不同的微生物模型系统来证明该技术的广泛适用性。首先,我们研究了工业相关的 l-赖氨酸生产棒状杆菌菌株和同一物种的 l-赖氨酸营养缺陷型变体之间的共生相互作用。两种菌株在空间上分离的共培养导致营养缺陷型菌株的生长,这是由于生产菌株分泌的 l-赖氨酸供应所致。作为第二个例子,我们研究了大肠杆菌 S17-1 和假单胞菌 putida KT2440 细胞之间的细菌接合。我们可以证明,直接的细胞接触对于通过接合进行成功的基因转移是必不可少的,而当细胞在空间上分离时,这种接触会受到阻碍。所提出的设备为进一步研究自然和合成微生物群落的非接触和基于接触的相互作用奠定了基础。