Suppr超能文献

从汇集的单细胞 RNA-seq 文库中恢复和分析转录组子集。

Recovery and analysis of transcriptome subsets from pooled single-cell RNA-seq libraries.

机构信息

RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.

Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA.

出版信息

Nucleic Acids Res. 2019 Feb 28;47(4):e20. doi: 10.1093/nar/gky1204.

Abstract

Single-cell RNA sequencing (scRNA-seq) methods generate sparse gene expression profiles for thousands of single cells in a single experiment. The information in these profiles is sufficient to classify cell types by distinct expression patterns but the high complexity of scRNA-seq libraries often prevents full characterization of transcriptomes from individual cells. To extract more focused gene expression information from scRNA-seq libraries, we developed a strategy to physically recover the DNA molecules comprising transcriptome subsets, enabling deeper interrogation of the isolated molecules by another round of DNA sequencing. We applied the method in cell-centric and gene-centric modes to isolate cDNA fragments from scRNA-seq libraries. First, we resampled the transcriptomes of rare, single megakaryocytes from a complex mixture of lymphocytes and analyzed them in a second round of DNA sequencing, yielding up to 20-fold greater sequencing depth per cell and increasing the number of genes detected per cell from a median of 1313 to 2002. We similarly isolated mRNAs from targeted T cells to improve the reconstruction of their VDJ-rearranged immune receptor mRNAs. Second, we isolated CD3D mRNA fragments expressed across cells in a scRNA-seq library prepared from a clonal T cell line, increasing the number of cells with detected CD3D expression from 59.7% to 100%. Transcriptome resampling is a general approach to recover targeted gene expression information from single-cell RNA sequencing libraries that enhances the utility of these costly experiments, and may be applicable to the targeted recovery of molecules from other single-cell assays.

摘要

单细胞 RNA 测序 (scRNA-seq) 方法在单个实验中生成数千个单细胞的稀疏基因表达谱。这些谱中的信息足以通过独特的表达模式对细胞类型进行分类,但 scRNA-seq 文库的高度复杂性通常会阻止对单个细胞的转录组进行全面表征。为了从 scRNA-seq 文库中提取更集中的基因表达信息,我们开发了一种策略来物理回收组成转录组子集的 DNA 分子,从而能够通过另一轮 DNA 测序更深入地研究分离的分子。我们以细胞为中心和基因为中心的模式应用该方法从 scRNA-seq 文库中分离 cDNA 片段。首先,我们从淋巴细胞的复杂混合物中重新取样稀有、单个巨核细胞的转录组,并在第二轮 DNA 测序中对其进行分析,每个细胞的测序深度增加了 20 倍,每个细胞检测到的基因数量从中位数 1313 增加到 2002。我们还类似地从靶向 T 细胞中分离 mRNA,以改善对其 VDJ 重排免疫受体 mRNA 的重建。其次,我们从从克隆 T 细胞系制备的 scRNA-seq 文库中分离跨细胞表达的 CD3D mRNA 片段,将具有检测到的 CD3D 表达的细胞数量从 59.7%增加到 100%。转录组重采样是一种从单细胞 RNA 测序文库中恢复靶向基因表达信息的通用方法,增强了这些昂贵实验的实用性,并且可能适用于从其他单细胞测定中靶向回收分子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5e/6393243/24bb119f14a7/gky1204fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验