Suppr超能文献

单细胞标记逆转录测序(STRT-Seq)。

Single-Cell Tagged Reverse Transcription (STRT-Seq).

作者信息

Natarajan Kedar Nath

机构信息

Functional Genomics and Metabolism Unit, Danish Institute of Advanced Study (D-IAS), University of Southern Denmark, Odense, Denmark.

出版信息

Methods Mol Biol. 2019;1979:133-153. doi: 10.1007/978-1-4939-9240-9_9.

Abstract

Single-cell RNA sequencing (scRNA-seq) has become an established approach to profile entire transcriptomes of individual cells from different cell types, tissues, species, and organisms. Single-cell tagged reverse transcription sequencing (STRT-seq) is one of the early single-cell methods which utilize 5' tag counting of transcripts. STRT-seq performed on microfluidics Fluidigm C1 platform (STRT-C1) is a flexible scRNA-seq approach that allows for accurate, sensitive and importantly molecular counting of transcripts at single-cell level. Herein, I describe the STRT-C1 method and the steps involved in capturing 96 cells across C1 microfluidics chip, cDNA synthesis, and preparing single-cell libraries for Illumina short-read sequencing.

摘要

单细胞RNA测序(scRNA-seq)已成为一种成熟的方法,用于分析来自不同细胞类型、组织、物种和生物体的单个细胞的整个转录组。单细胞标记逆转录测序(STRT-seq)是早期的单细胞方法之一,它利用转录本的5'标签计数。在微流控Fluidigm C1平台上进行的STRT-seq(STRT-C1)是一种灵活的scRNA-seq方法,可在单细胞水平上对转录本进行准确、灵敏且重要的分子计数。在此,我描述了STRT-C1方法以及在C1微流控芯片上捕获96个细胞、cDNA合成以及为Illumina短读测序制备单细胞文库所涉及的步骤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验