Opt Lett. 2018 Dec 1;43(23):5749-5752. doi: 10.1364/OL.43.005749.
We address the existence and stability of off-site and on-site vortex solitons with a unit topological charge in space-fractional Kerr lattices. In contrast to the reported ordinary Kerr lattices, vortex solitons in the proposed space-fractional lattices are stable only in the intermediate region of propagation constant, and this region widens rapidly with the increase of a Lévy index. Under the same Lévy index, the stability range of on-site vortices is larger than that of off-site ones. In particular, for on-site vortex solitons, the upper edge of the stability range appears where the maximum of soliton power is located, which provides an effective way to identify the stability range of on-site vortices. Our results extend the study of vortex solitons into space-fractional systems and deepen the understanding of Kerr lattices in fractional dimensions.
我们研究了具有单位拓扑电荷的离域和局域涡旋孤子在分数阶 Kerr 格子中的存在性和稳定性。与已报道的普通 Kerr 格子不同,在提出的分数阶格子中,涡旋孤子仅在传播常数的中间区域稳定,并且该区域随着 Levy 指数的增加而迅速变宽。在相同的 Levy 指数下,局域涡旋的稳定范围大于离域涡旋的稳定范围。特别是对于局域涡旋孤子,稳定范围的上限出现在孤子功率的最大值处,这为识别局域涡旋的稳定范围提供了一种有效的方法。我们的结果将涡旋孤子的研究扩展到分数阶系统,并加深了对分数维 Kerr 格子的理解。