Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark.
Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark.
Phys Rev Lett. 2018 Nov 16;121(20):206003. doi: 10.1103/PhysRevLett.121.206003.
We studied the interaction of water with the anatase TiO_{2}(001) surface by means of scanning tunneling microscopy, x-ray photoelectron spectroscopy, and density functional theory calculations. Water adsorbs dissociatively on the ridges of a (1×4) reconstructed surface, resulting in a (3×4) periodic structure of hydroxyl pairs. We observed this process at 120 K, and the created hydroxyls desorb from the surface by recombination to water, which occurs below 300 K. Our calculations reveal the water dissociation mechanism and uncover a very pronounced dependence on the coverage. This strong coverage dependence is explained through water-induced reconstruction on anatase TiO_{2}(001)-(1×4). The high intrinsic reactivity of the anatase TiO_{2}(001) surface towards water observed here is fundamentally different from that seen on other surfaces of titania and may explain its high catalytic activity in heterogeneous catalysis and photocatalysis.
我们通过扫描隧道显微镜、X 射线光电子能谱和密度泛函理论计算研究了水与锐钛矿 TiO_{2}(001)表面的相互作用。水在(1×4)重构表面的脊上发生解离吸附,形成羟基对的(3×4)周期性结构。我们在 120 K 下观察到了这个过程,形成的羟基通过重组回到水相而脱附,这一过程发生在 300 K 以下。我们的计算揭示了水的解离机制,并发现其对覆盖率有非常显著的依赖性。这种强烈的覆盖率依赖性可以通过水诱导的锐钛矿 TiO_{2}(001)-(1×4)重构来解释。与钛酸盐的其他表面相比,我们在这里观察到的锐钛矿 TiO_{2}(001)表面对水的固有高反应性在根本上有所不同,这可能解释了其在多相催化和光催化中的高催化活性。