Rogala M, Bihlmayer G, Dabrowski P, Rodenbücher C, Wrana D, Krok F, Klusek Z, Szot K
University of Lodz, Faculty of Physics and Applied Informatics, 90-236, Lodz, Poland.
Forschungszentrum Jülich GmbH, Peter Grünberg Institute (PGI-1 & PGI-7), 52425, Jülich, Germany.
Sci Rep. 2019 Aug 29;9(1):12563. doi: 10.1038/s41598-019-48837-3.
We investigate the thermal reduction of TiO in ultra-high vacuum. Contrary to what is usually assumed, we observe that the maximal surface reduction occurs not during the heating, but during the cooling of the sample back to room temperature. We describe the self-reduction, which occurs as a result of differences in the energies of defect formation in the bulk and surface regions. The findings presented are based on X-ray photoelectron spectroscopy carried out in-operando during the heating and cooling steps. The presented conclusions, concerning the course of redox processes, are especially important when considering oxides for resistive switching and neuromorphic applications and also when describing the mechanisms related to the basics of operation of solid oxide fuel cells.
我们在超高真空环境下研究了TiO的热还原过程。与通常的假设相反,我们观察到最大表面还原并非发生在加热过程中,而是在样品冷却回到室温的过程中。我们描述了自还原现象,它是由于体相和表面区域缺陷形成能量的差异而产生的。所呈现的研究结果基于在加热和冷却步骤中进行的原位X射线光电子能谱分析。当考虑用于电阻开关和神经形态应用的氧化物时,以及在描述与固体氧化物燃料电池基本运行机制相关的过程时,所给出的关于氧化还原过程的结论尤为重要。