Department of Chemical Engineering, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea.
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
J Colloid Interface Sci. 2019 Mar 7;538:45-50. doi: 10.1016/j.jcis.2018.11.029. Epub 2018 Nov 10.
In conventional 'bulk' nanoprecipitation, the capacity to load hydrophobic drugs into the polymeric nanoparticles (NPs) is limited to about 1%. The size distribution of the resulting NPs becomes polydisperse when higher precursor concentration is used to increase the drug loading. Hence, it should be possible to enhance the hydrophobic drug loading in polymeric NPs while maintaining the uniform NP size distribution by optimizing the nanoprecipitation process and purification process.
Systematic studies were performed to enhance the loading of docetaxel (Dtxl) by using a process of centrifugal spin-down, rapid mixing by turbulence, and addition of co-solvent. The size distributions and Dtxl loading of the NPs were measured using dynamic light scattering and HPLC, respectively.
The centrifugal spin-down process helps to maintain uniform size distribution even at the high precursor concentration. In bulk nanoprecipitation, the resulting NPs achieved Dtxl loading up to 3.2%. By adopting turbulence for rapid mixing, the loading of Dtxl increased to 4.4%. By adding hexane as co-solvent, the loading of Dtxl further increased to 5.5%. Because of the drug loading augmentation, high degree of control, and extremely high production rate, the developed method may be useful for industrial-scale production of personalized nanomedicines by nanoprecipitation.
在传统的“批量”纳米沉淀中,将疏水性药物载入聚合物纳米粒子(NPs)的能力被限制在约 1%。当使用更高的前体浓度来增加药物载量时,所得 NPs 的粒径分布会变得多分散。因此,通过优化纳米沉淀过程和纯化过程,应该有可能在保持均匀的 NP 粒径分布的同时,提高聚合物 NPs 中的疏水性药物载量。
系统地研究了通过离心旋转下降、通过湍流快速混合以及添加共溶剂来提高多西他赛(Dtxl)载药量的方法。使用动态光散射和 HPLC 分别测量 NPs 的粒径分布和 Dtxl 载药量。
离心旋转下降过程有助于即使在前体浓度较高的情况下也能保持均匀的粒径分布。在批量纳米沉淀中,所得 NPs 的 Dtxl 载药量最高可达 3.2%。通过采用湍流进行快速混合,Dtxl 的载药量增加到 4.4%。通过添加己烷作为共溶剂,Dtxl 的载药量进一步增加到 5.5%。由于药物负载的增加、高度的控制和极高的生产速度,该开发的方法可能对通过纳米沉淀进行工业规模生产个性化纳米药物有用。