Suppr超能文献

基于结构脑连接的深度学习技术区分阿尔茨海默病与路易体痴呆。

Differentiating Alzheimer's Disease from Dementia with Lewy Bodies Using a Deep Learning Technique Based on Structural Brain Connectivity.

机构信息

Department of Radiology, Juntendo University.

出版信息

Magn Reson Med Sci. 2019 Jul 16;18(3):219-224. doi: 10.2463/mrms.mp.2018-0091. Epub 2018 Dec 3.

Abstract

PURPOSE

Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) are representative disorders of dementia of the elderly and the neuroimaging has contributed to early diagnosis by estimation of alterations of brain volume, blood flow and metabolism. A brain network analysis by MR imaging (MR connectome) is a recently developed technique and can estimate the dysfunction of the brain network in AD and DLB. A graph theory which is a major technique of network analysis is useful for a group study to extract the feature of disorders, but is not necessarily suitable for the disorder differentiation at the individual level. In this investigation, we propose a deep learning technique as an alternative method of the graph analysis for recognition and classification of AD and DLB at the individual subject level.

MATERIALS AND METHODS

Forty-eight brain structural connectivity data of 18 AD, 8 DLB and 22 healthy controls were applied to the machine learning consisting of a six-layer convolution neural network (CNN) model. Estimation of the deep learning model to classify AD, DLB and non-AD/DLB was performed using the 4-fold cross-validation method.

RESULTS

The accuracy, average precision and recall of our CNN model were 0.73, 0.78 and 0.73, and the specificity precision and recall were 0.68 and 0.79 in AD, 0.94 and 0.65 in DLB and 0.73 and 0.75 in non-AD/DLB. The triangular probability map of the MR connectome revealed the probability of AD, DLB and non-AD/DLB in each subject.

CONCLUSION

Our preliminary investigation revealed the adaptation of deep learning to the MR connectome and proposed its utility in the differentiation of dementia disorders at the individual subject level.

摘要

目的

阿尔茨海默病(AD)和路易体痴呆(DLB)是老年痴呆症的代表性疾病,神经影像学通过估计脑体积、血流和代谢的改变有助于早期诊断。磁共振成像(MR 连接组学)的脑网络分析是一种新开发的技术,可以估计 AD 和 DLB 中脑网络的功能障碍。图论是网络分析的主要技术之一,可用于组研究以提取疾病特征,但不一定适用于个体水平的疾病区分。在这项研究中,我们提出了一种深度学习技术作为图分析的替代方法,用于个体水平 AD 和 DLB 的识别和分类。

材料和方法

将 18 例 AD、8 例 DLB 和 22 例健康对照者的 48 例脑结构连接数据应用于包含 6 层卷积神经网络(CNN)模型的机器学习中。使用 4 折交叉验证法对 AD、DLB 和非 AD/DLB 的深度学习模型进行分类估计。

结果

我们的 CNN 模型的准确率、平均精度和召回率分别为 0.73、0.78 和 0.73,AD 中的特异性精度和召回率分别为 0.68 和 0.79,DLB 中的分别为 0.94 和 0.65,非 AD/DLB 中的分别为 0.73 和 0.75。MR 连接组学的三角概率图显示了每个受试者患 AD、DLB 和非 AD/DLB 的概率。

结论

我们的初步研究表明,深度学习适用于 MR 连接组学,并提出了其在个体受试者水平区分痴呆症的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1c9/6630050/a4c2e83b7534/mrms-18-219-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验