Suppr超能文献

基于知识的头颈部癌症剂量预测模型受到器官间相互依赖和数据集不一致性的强烈影响。

Knowledge-based dose prediction models for head and neck cancer are strongly affected by interorgan dependency and dataset inconsistency.

机构信息

Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.

出版信息

Med Phys. 2019 Feb;46(2):934-943. doi: 10.1002/mp.13316. Epub 2018 Dec 24.

Abstract

PURPOSE

The goal of this study was to generate a large treatment plan database for head and neck (H&N) cancer patients that can be considered as the gold standard to train and validate models for knowledge-based (KB) treatment planning and QA. With this dataset, the intrinsic prediction performance, the effect of interorgan dependency, and the impact of dataset inconsistency was investigated for an existing treatment planning QA model.

METHODS

The CT scans of 108 previously treated oropharyngeal patients were used to establish the plan database. For each patient, 15 Pareto optimal treatment plans with different planning priorities for the parotid glands were generated with fully automatic multicriterial treatment planning (1620 plans in total). For each of the 15 sets of plans in the database, a KB model was trained with 54 patients and validated on the other 54 by comparing the predictions with the achieved doses. The dose prediction accuracy (predicted-achieved) of the KB models was assessed and compared among the different models to characterize the intrinsic performance and effect of interorgan dependency. In addition, the effect of dataset inconsistency with respect to planning prioritizations was investigated by mixing plans with different prioritizations, for the training, the validation dataset, and for both combined.

RESULTS

In the case of a high planning priority, the mean ± SD of the prediction error for the mean dose of the parotid glands was only 0.2 ± 2.2 Gy, but this increased to 1.0 ± 5.0 Gy in the case that the parotid glands had a low planning priority. Dataset inconsistency (in planning priority) led to a large increase in prediction error for the parotid glands (mean ± SD) from 0.2 ± 2.2 Gy to 2.8 ± 3.3 Gy, -3.2 ± 5.0 Gy or -0.6 ± 5.4 Gy, depending on the way the datasets were mixed.

CONCLUSIONS

The generated plan database can be used to validate and characterize KB prediction models for H&N cancer and will be made available upon request. The investigated KB model performed well in case the parotid glands had a high planning priority (little dependence on lower priority OARs), but poorly for organs for which the dose strongly depends on other higher priority OARs. To improve the performance of KB prediction models for H&N cancer, interorgan dependency should be modeled and accounted for. Dataset inconsistency has a large negative impact on the prediction errors of KB models and should be avoided as much as possible.

摘要

目的

本研究的目的是为头颈部(H&N)癌症患者生成一个大型治疗计划数据库,该数据库可被视为训练和验证基于知识(KB)治疗计划和 QA 模型的金标准。使用该数据集,研究了现有治疗计划 QA 模型的固有预测性能、器官间依赖性的影响以及数据集不一致性的影响。

方法

使用 108 名先前接受治疗的口咽癌患者的 CT 扫描来建立计划数据库。对于每个患者,使用完全自动多标准治疗计划(总共 1620 个计划)为腮腺生成 15 组具有不同腮腺计划优先级的 Pareto 最优治疗计划。在数据库中的 15 组计划中的每一组中,使用 54 名患者训练 KB 模型,并使用另 54 名患者的预测剂量与实际剂量进行比较来验证模型。评估并比较了不同模型之间 KB 模型的剂量预测准确性(预测值与实际值之间的差异),以表征固有性能和器官间依赖性的影响。此外,通过混合具有不同优先级的计划,研究了数据集不一致性对训练、验证数据集以及两者的综合的影响。

结果

在计划优先级较高的情况下,腮腺平均剂量的预测误差的均值±标准差仅为 0.2±2.2Gy,但在腮腺计划优先级较低的情况下,该值增加到 1.0±5.0Gy。数据集不一致性(在计划优先级方面)导致腮腺的预测误差大幅增加(均值±标准差),从 0.2±2.2Gy 增加到 2.8±3.3Gy、-3.2±5.0Gy 或-0.6±5.4Gy,具体取决于数据集的混合方式。

结论

生成的计划数据库可用于验证和表征头颈部癌症的 KB 预测模型,并将根据要求提供。在所研究的 KB 模型中,当腮腺具有较高的计划优先级(对较低优先级 OAR 的依赖性较小)时,该模型表现良好,但对于剂量强烈依赖其他较高优先级 OAR 的器官,该模型表现不佳。为了提高头颈部癌症的 KB 预测模型的性能,应建模并考虑器官间的依赖性。数据集不一致性对 KB 模型的预测误差有很大的负面影响,应尽可能避免。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验