Suppr超能文献

多机构评估帕累托导航引导的前列腺癌自动化放疗计划解决方案。

Multi-institutional evaluation of a Pareto navigation guided automated radiotherapy planning solution for prostate cancer.

机构信息

Radiotherapy Physics Department, Velindre Cancer Centre, CF14 2TL, Cardiff, Wales, UK.

Northern Centre for Cancer Care, Cancer Services and Clinical Haematology, Newcastle upon Tyne, UK.

出版信息

Radiat Oncol. 2024 Apr 8;19(1):45. doi: 10.1186/s13014-024-02404-x.

Abstract

BACKGROUND

Current automated planning solutions are calibrated using trial and error or machine learning on historical datasets. Neither method allows for the intuitive exploration of differing trade-off options during calibration, which may aid in ensuring automated solutions align with clinical preference. Pareto navigation provides this functionality and offers a potential calibration alternative. The purpose of this study was to validate an automated radiotherapy planning solution with a novel multi-dimensional Pareto navigation calibration interface across two external institutions for prostate cancer.

METHODS

The implemented 'Pareto Guided Automated Planning' (PGAP) methodology was developed in RayStation using scripting and consisted of a Pareto navigation calibration interface built upon a 'Protocol Based Automatic Iterative Optimisation' planning framework. 30 previous patients were randomly selected by each institution (I and I), 10 for calibration and 20 for validation. Utilising the Pareto navigation interface automated protocols were calibrated to the institutions' clinical preferences. A single automated plan (VMAT) was generated for each validation patient with plan quality compared against the previously treated clinical plan (VMAT) both quantitatively, using a range of DVH metrics, and qualitatively through blind review at the external institution.

RESULTS

PGAP led to marked improvements across the majority of rectal dose metrics, with D reduced by 3.7 Gy and 1.8 Gy for I and I respectively (p < 0.001). For bladder, results were mixed with low and intermediate dose metrics reduced for I but increased for I. Differences, whilst statistically significant (p < 0.05) were small and not considered clinically relevant. The reduction in rectum dose was not at the expense of PTV coverage (D was generally improved with VMAT), but was somewhat detrimental to PTV conformality. The prioritisation of rectum over conformality was however aligned with preferences expressed during calibration and was a key driver in both institutions demonstrating a clear preference towards VMAT, with 31/40 considered superior to VMAT upon blind review.

CONCLUSIONS

PGAP enabled intuitive adaptation of automated protocols to an institution's planning aims and yielded plans more congruent with the institution's clinical preference than the locally produced manual clinical plans.

摘要

背景

当前的自动化计划解决方案是通过在历史数据集上进行反复试验或机器学习来进行校准的。这两种方法都不允许在校准过程中直观地探索不同的权衡选项,这可能有助于确保自动化解决方案与临床偏好保持一致。Pareto 导航提供了此功能,并提供了一种潜在的校准替代方案。本研究的目的是验证一种针对前列腺癌的新型多维 Pareto 导航校准界面的自动化放射治疗计划解决方案,该解决方案在两个外部机构中得到了验证。

方法

在 RayStation 中使用脚本实施的“Pareto 引导自动化规划”(PGAP)方法由基于“基于协议的自动迭代优化”计划框架的 Pareto 导航校准界面以及 Pareto 导航校准界面组成。每个机构(I 和 II)随机选择了 30 例以前的患者,其中 10 例用于校准,20 例用于验证。利用 Pareto 导航界面,对自动化协议进行了校准,以满足机构的临床偏好。针对每个验证患者生成了一个单式自动计划(VMAT),并通过多种剂量体积直方图(DVH)指标进行了定量比较,通过外部机构的盲法评估进行了定性比较。

结果

PGAP 导致大多数直肠剂量指标明显改善,I 和 II 的 D 分别降低了 3.7Gy 和 1.8Gy(p<0.001)。对于膀胱,低剂量和中剂量指标有所降低,但高剂量指标却有所增加。尽管差异具有统计学意义(p<0.05),但很小,且不被认为具有临床意义。直肠剂量的降低并未以 PTV 覆盖范围为代价(VMAT 通常会改善 D),但对 PTV 的适形性有些不利。然而,对直肠的优先级高于适形性,这与校准期间表达的偏好一致,并且是两个机构都明显倾向于 VMAT 的关键驱动因素,在盲法评估中,有 31/40 例被认为优于 VMAT。

结论

PGAP 使自动化协议能够直观地适应机构的计划目标,并生成与机构临床偏好更一致的计划,而不是本地生成的手动临床计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cde/11003074/741c3f432c2f/13014_2024_2404_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验