Preiss Julia, Kage Daniel, Hoffmann Katrin, Martínez Todd J, Resch-Genger Ute, Presselt Martin
Institute of Physical Chemistry , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany.
Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Strasse 9 , 07745 Jena , Germany.
J Phys Chem A. 2018 Dec 27;122(51):9813-9820. doi: 10.1021/acs.jpca.8b08886. Epub 2018 Dec 17.
The fluorescence lifetime is a key property of fluorophores that can be utilized for microenvironment probing, analyte sensing, and multiplexing as well as barcoding applications. For the rational design of lifetime probes and barcodes, theoretical methods have been developed to enable the ab initio prediction of this parameter, which depends strongly on interactions with solvent molecules and other chemical species in the emitteŕs immediate environment. In this work, we investigate how a conductor-like screening model (COSMO) can account for variations in fluorescence lifetimes that are caused by such fluorophore-solvent interactions. Therefore, we calculate vibrationally broadened fluorescence spectra using the nuclear ensemble method to obtain distorted molecular geometries to sample the electronic transitions with time-dependent density functional theory (TDDFT). The influence of the solvent on fluorescence lifetimes is accounted for with COSMO. For example, for 4-hydroxythiazole fluorophore containing different heteroatoms and acidic and basic moieties in aprotic and protic solvents of varying polarity, this approach was compared to experimentally determined lifetimes in the same solvents. Our results demonstrate a good correlation between theoretically predicted and experimentally measured fluorescence lifetimes except for the polar solvents ethanol and acetonitrile that can specifically interact with the heteroatoms and the carboxylic acid of the thiazole derivative.
荧光寿命是荧光团的一个关键特性,可用于微环境探测、分析物传感、多路复用以及条形码应用。为了合理设计寿命探针和条形码,已经开发了理论方法来实现对该参数的从头预测,该参数强烈依赖于与发射体紧邻环境中的溶剂分子和其他化学物质的相互作用。在这项工作中,我们研究了类导体屏蔽模型(COSMO)如何解释由这种荧光团 - 溶剂相互作用引起的荧光寿命变化。因此,我们使用核系综方法计算振动展宽的荧光光谱,以获得扭曲的分子几何结构,并用含时密度泛函理论(TDDFT)对电子跃迁进行采样。溶剂对荧光寿命的影响用COSMO来解释。例如,对于在不同极性的非质子和质子溶剂中含有不同杂原子以及酸性和碱性基团的4 - 羟基噻唑荧光团,将这种方法与在相同溶剂中实验测定的寿命进行了比较。我们的结果表明,除了能与噻唑衍生物的杂原子和羧酸发生特异性相互作用的极性溶剂乙醇和乙腈外,理论预测的荧光寿命与实验测量的荧光寿命之间具有良好的相关性。