IEEE Trans Image Process. 2019 May;28(5):2173-2186. doi: 10.1109/TIP.2018.2883522. Epub 2018 Nov 28.
Hashing has attracted increasing research attention in recent years due to its high efficiency of computation and storage in image retrieval. Recent works have demonstrated the superiority of simultaneous feature representations and hash functions learning with deep neural networks. However, most existing deep hashing methods directly learn the hash functions by encoding the global semantic information, while ignoring the local spatial information of images. The loss of local spatial structure makes the performance bottleneck of hash functions, therefore limiting its application for accurate similarity retrieval. In this paper, we propose a novel deep ordinal hashing (DOH) method, which learns ordinal representations to generate ranking-based hash codes by leveraging the ranking structure of feature space from both local and global views. In particular, to effectively build the ranking structure, we propose to learn the rank correlation space by exploiting the local spatial information from fully convolutional network and the global semantic information from the convolutional neural network simultaneously. More specifically, an effective spatial attention model is designed to capture the local spatial information by selectively learning well-specified locations closely related to target objects. In such hashing framework, the local spatial and global semantic nature of images is captured in an end-to-end ranking-to-hashing manner. Experimental results conducted on three widely used datasets demonstrate that the proposed DOH method significantly outperforms the state-of-the-art hashing methods.
近年来,由于在图像检索中计算和存储的高效性,哈希技术引起了越来越多的研究关注。最近的工作已经证明了深度学习网络在同时学习特征表示和哈希函数方面的优越性。然而,大多数现有的深度哈希方法直接通过编码全局语义信息来学习哈希函数,而忽略了图像的局部空间信息。局部空间结构的丢失使得哈希函数的性能成为瓶颈,因此限制了其在精确相似性检索中的应用。在本文中,我们提出了一种新颖的深度有序哈希(DOH)方法,该方法通过利用特征空间的排序结构,从局部和全局视图学习有序表示来生成基于排序的哈希码。特别是,为了有效地构建排序结构,我们提出同时利用全卷积网络的局部空间信息和卷积神经网络的全局语义信息来学习排序相关空间。更具体地说,设计了一种有效的空间注意模型,通过选择性地学习与目标对象密切相关的指定位置来捕获局部空间信息。在这种哈希框架中,图像的局部空间和全局语义性质以端到端的排序到哈希方式进行捕获。在三个广泛使用的数据集上进行的实验结果表明,所提出的 DOH 方法显著优于最先进的哈希方法。