Center for Systems Biology , Massachusetts General Hospital Research Institute , Boston , Massachusetts 02114 , United States.
Department of Radiology , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts 02114 , United States.
ACS Nano. 2018 Dec 26;12(12):12015-12029. doi: 10.1021/acsnano.8b04338. Epub 2018 Dec 11.
Tumor-associated macrophages (TAMs) are widely implicated in cancer progression, and TAM levels can influence drug responses, particularly to immunotherapy and nanomedicines. However, it has been difficult to quantify total TAM numbers and their dynamic spatiotemporal distribution in a non-invasive and translationally relevant manner. Here, we address this need by developing a pharmacokinetically optimized, Cu-labeled polyglucose nanoparticle (Macrin) for quantitative positron emission tomography (PET) imaging of macrophages in tumors. By combining PET with high-resolution in vivo confocal microscopy and ex vivo imaging of optically cleared tissue, we found that Macrin was taken up by macrophages with >90% selectivity. Uptake correlated with the content of macrophages in both healthy tissue and tumors ( R > 0.9) and showed striking heterogeneity in the TAM content of an orthotopic and immunocompetent mouse model of lung carcinoma. In a proof-of-principle application, we imaged Macrin to monitor the macrophage response to neo-adjuvant therapy, using a panel of chemotherapeutic and γ-irradiation regimens. Multiple treatments elicited 180-650% increase in TAMs. Imaging identified especially TAM-rich tumors thought to exhibit enhanced permeability and retention of nanotherapeutics. Indeed, these TAM-rich tumors accumulated >700% higher amounts of a model poly(d,l-lactic- co-glycolic acid)- b-polyethylene glycol (PLGA-PEG) therapeutic nanoparticle compared to TAM-deficient tumors, suggesting that imaging may guide patient selection into nanomedicine trials. In an orthotopic breast cancer model, chemoradiation enhanced TAM and Macrin accumulation in tumors, which corresponded to the improved delivery and efficacy of two model nanotherapies, PEGylated liposomal doxorubicin and a TAM-targeted nanoformulation of the toll-like receptor 7/8 agonist resiquimod (R848). Thus, Macrin imaging offers a selective and translational means to quantify TAMs and inform therapeutic decisions.
肿瘤相关巨噬细胞(TAMs)广泛参与癌症进展,TAM 水平可以影响药物反应,特别是免疫疗法和纳米医学。然而,以非侵入性和转化相关的方式定量总 TAM 数量及其动态时空分布一直具有挑战性。在这里,我们通过开发一种药代动力学优化的、Cu 标记的多糖纳米颗粒(Macrin)来解决这一需求,用于肿瘤中巨噬细胞的定量正电子发射断层扫描(PET)成像。通过将 PET 与高分辨率体内共聚焦显微镜和光学清除组织的体外成像相结合,我们发现 Macrin 被巨噬细胞以 >90%的选择性摄取。摄取与健康组织和肿瘤中巨噬细胞的含量相关(R > 0.9),并且在肺癌的原位和免疫活性小鼠模型中显示出 TAM 含量的惊人异质性。在一个原理验证应用中,我们使用一组化疗和γ辐射方案,使用 Macrin 来监测巨噬细胞对新辅助治疗的反应。多种治疗方法引起 TAMs 增加 180-650%。成像鉴定了特别富含 TAM 的肿瘤,这些肿瘤被认为表现出纳米药物的增强通透性和保留。事实上,与 TAM 缺乏的肿瘤相比,这些富含 TAM 的肿瘤积累了 >700%更高量的模型聚(D,L-丙交酯-共-乙交酯)-b-聚乙二醇(PLGA-PEG)治疗性纳米颗粒,这表明成像可能指导患者选择进入纳米医学试验。在原位乳腺癌模型中,放化疗增强了肿瘤中的 TAM 和 Macrin 积累,这与两种模型纳米疗法的改善递送和疗效相对应,即 PEG 化脂质体多柔比星和 Toll 样受体 7/8 激动剂瑞喹莫德(R848)的 TAM 靶向纳米制剂。因此,Macrin 成像提供了一种选择性和转化相关的方法来定量 TAMs 并为治疗决策提供信息。