Pain Treatment Center, Hartford Hospital, West Hartford, CT.
Genomas Inc., Hartford, CT.
Pain Physician. 2018 Nov;21(6):E611-E621.
A major challenge for effective pharmacotherapy in pain management is to provide the drug best suited to the patient's innate characteristics.
The article illustrates pharmacogenetic principles to optimize treatments for patients and increase the likelihood of pain relief without dependence. Genetic variances are particularly relevant to opioid drugs used in pain control, and can now be harvested for predictive clinical decision support.
Clinically actionable polymorphisms in CYP2D6 (cytochrome p450 2D6) and OPRM1 (mu 1 opioid receptor), the most important gene coding, respectively, for a metabolizing enzyme and receptor for opioids are reviewed, and functional effects described.
Risk of dysfunction is calculated from the frequency of the alleles with null function for CYP2D6, and from the low function polymorphism for OPRM1. Integration of genetic variability was performed for 9 combinatorial scenarios for CYP2D6 and OPRM1. Each combination was quantified in frequency and classified for clinical impact. A rational and pharmacological basis for personalized pain management based on pharmacokinetic and pharmacodynamic modeling is extracted from the frequency of the combinations.
Patients can be classified in 3 broad risk categories for opioid side effects and dependence. Patients at high-risk with dysfunctional CYP2D6 or OPRM1 account for ~14% of the population and are best managed with non-opioids. Patients at medium risk with subnormal CYP2D6 or OPRM1 account for ~48% of the population and can be managed with dose monitoring. Patients at low risk with functional CYP2D6 and OPRM1 account for ~38% of the population and should be availed to opioid therapy.
Heuristic clinical decision support considerations are not validated yet by deployment in large clinical practices. Environmental modifiers such as other drugs and dietary supplements interact with innate characteristics to modify the genetic predictions.
Through clinical decision support interpreting the genotyping data, drug choices and doses can then be tailored to provide safe and effective therapy for individual patients. This precision affords personalized medicine to be practiced in pain treatment. Genetic factors could help determine why some patients seem more vulnerable than others to opioid side effects and dependence.
Pain management, opioids, CYP2D6, OPRM1, clinical decision support, pharmacokinetics, pharmacodynamics, pharmacogenetics, combinatorial genotypes.
在疼痛管理的有效药物治疗中,一个主要的挑战是提供最适合患者固有特征的药物。
本文阐述了药物遗传学原则,以优化患者的治疗方法,并提高无依赖止痛的可能性。遗传变异与用于疼痛控制的阿片类药物特别相关,现在可以用于预测性临床决策支持。
回顾了 CYP2D6(细胞色素 p450 2D6)和 OPRM1(μ1 阿片受体)的临床可操作多态性,分别为代谢酶和阿片受体的最重要基因编码,描述了其功能影响。
根据 CYP2D6 无功能等位基因的频率和 OPRM1 的低功能多态性,计算功能障碍的风险。对 CYP2D6 和 OPRM1 的 9 种组合情景进行了遗传变异的整合。对每种组合进行了频率量化,并进行了临床影响分类。从组合的频率中提取了基于药代动力学和药效动力学建模的个性化疼痛管理的合理和药理学基础。
可以将患者分为 3 个广泛的阿片类药物副作用和依赖风险类别。具有功能障碍 CYP2D6 或 OPRM1 的高风险患者约占人群的 14%,最好用非阿片类药物治疗。具有亚正常 CYP2D6 或 OPRM1 的中等风险患者约占人群的 48%,可以通过剂量监测进行治疗。具有正常 CYP2D6 和 OPRM1 的低风险患者约占人群的 38%,应提供阿片类药物治疗。
启发式临床决策支持考虑因素尚未通过在大型临床实践中的部署得到验证。环境调节剂,如其他药物和膳食补充剂,与内在特征相互作用,改变遗传预测。
通过解释基因分型数据的临床决策支持,然后可以调整药物选择和剂量,为个体患者提供安全有效的治疗。这种精确性为疼痛治疗中的个体化医学提供了可能。遗传因素可以帮助确定为什么一些患者比其他患者更容易出现阿片类药物副作用和依赖。
疼痛管理,阿片类药物,CYP2D6,OPRM1,临床决策支持,药代动力学,药效动力学,药物遗传学,组合基因型。