School of Health Sciences, RMIT University, Melbourne, Victoria, Australia.
Clin Pharmacokinet. 2009;48(12):761-804. doi: 10.2165/11318070-000000000-00000.
Part I of this article discussed the potential functional importance of genetic mutations and alleles of the human cytochrome P450 2D6 (CYP2D6) gene. The impact of CYP2D6 polymorphisms on the clearance of and response to a series of cardiovascular drugs was addressed. Since CYP2D6 plays a major role in the metabolism of a large number of other drugs, Part II of the article highlights the impact of CYP2D6 polymorphisms on the response to other groups of clinically used drugs. Although clinical studies have observed a gene-dose effect for some tricyclic antidepressants, it is difficult to establish clear relationships of their pharmacokinetics and pharmacodynamic parameters to genetic variations of CYP2D6; therefore, dosage adjustment based on the CYP2D6 phenotype cannot be recommended at present. There is initial evidence for a gene-dose effect on commonly used selective serotonin reuptake inhibitors (SSRIs), but data on the effect of the CYP2D6 genotype/phenotype on the response to SSRIs and their adverse effects are scanty. Therefore, recommendations for dose adjustment of prescribed SSRIs based on the CYP2D6 genotype/phenotype may be premature. A number of clinical studies have indicated that there are significant relationships between the CYP2D6 genotype and steady-state concentrations of perphenazine, zuclopenthixol, risperidone and haloperidol. However, findings on the relationships between the CYP2D6 genotype and parkinsonism or tardive dyskinesia treatment with traditional antipsychotics are conflicting, probably because of small sample size, inclusion of antipsychotics with variable CYP2D6 metabolism, and co-medication. CYP2D6 phenotyping and genotyping appear to be useful in predicting steady-state concentrations of some classical antipsychotic drugs, but their usefulness in predicting clinical effects must be explored. Therapeutic drug monitoring has been strongly recommended for many antipsychotics, including haloperidol, chlorpromazine, fluphenazine, perphenazine, risperidone and thioridazine, which are all metabolized by CYP2D6. It is possible to merge therapeutic drug monitoring and pharmacogenetic testing for CYP2D6 into clinical practice. There is a clear gene-dose effect on the formation of O-demethylated metabolites from multiple opioids, but the clinical significance of this may be minimal, as the analgesic effect is not altered in poor metabolizers (PMs). Genetically caused inactivity of CYP2D6 renders codeine ineffective owing to lack of morphine formation, decreases the efficacy of tramadol owing to reduced formation of the active O-desmethyl-tramadol and reduces the clearance of methadone. Genetically precipitated drug interactions might render a standard opioid dose toxic. Because of the important role of CYP2D6 in tamoxifen metabolism and activation, PMs are likely to exhibit therapeutic failure, and ultrarapid metabolizers (UMs) are likely to experience adverse effects and toxicities. There is a clear gene-concentration effect for the formation of endoxifen and 4-OH-tamoxifen. Tamoxifen-treated cancer patients carrying CYP2D6*4, *5, *10, or *41 associated with significantly decreased formation of antiestrogenic metabolites had significantly more recurrences of breast cancer and shorter relapse-free periods. Many studies have identified the genetic CYP2D6 status as an independent predictor of the outcome of tamoxifen treatment in women with breast cancer, but others have not observed this relationship. Thus, more favourable tamoxifen treatment seems to be feasible through a priori genetic assessment of CYP2D6, and proper dose adjustment may be needed when the CYP2D6 genotype is determined in a patient. Dolasetron, ondansetron and tropisetron, all in part metabolized by CYP2D6, are less effective in UMs than in other patients. Overall, there is a strong gene-concentration relationship only for tropisetron. CYP2D6 genotype screening prior to antiemetic treatment may allow for modification of antiemetic dosing. An alternative is to use a serotonin agent that is metabolized independently of CYP2D6, such as granisetron, which would obviate the need for genotyping and may lead to an improved drug response. To date, the functional impact of most CYP2D6 alleles has not been systematically assessed for most clinically important drugs that are mainly metabolized by CYP2D6, though some initial evidence has been identified for a very limited number of drugs. The majority of reported in vivo pharmacogenetic data on CYP2D6 are from single-dose and steady-state pharmacokinetic studies of a small number of drugs. Pharmacodynamic data on CYP2D6 polymorphisms are scanty for most drug studies. Given that genotype testing for CYP2D6 is not routinely performed in clinical practice and there is uncertainty regarding genotype-phenotype, gene-concentration and gene-dose relationships, further prospective studies on the clinical impact of CYP2D6-dependent metabolism of drugs are warranted in large cohorts.
本文第一部分讨论了人类细胞色素 P450 2D6(CYP2D6)基因的遗传突变和等位基因在潜在功能上的重要性。探讨了 CYP2D6 多态性对一系列心血管药物的清除率和反应的影响。由于 CYP2D6 在大量其他药物的代谢中起着主要作用,本文第二部分重点介绍了 CYP2D6 多态性对其他临床常用药物组的反应的影响。虽然临床研究观察到一些三环类抗抑郁药的基因剂量效应,但很难确定其药代动力学和药效学参数与 CYP2D6 遗传变异之间的明确关系;因此,目前不能推荐基于 CYP2D6 表型的剂量调整。常用选择性 5-羟色胺再摄取抑制剂(SSRIs)存在剂量依赖性基因效应的初步证据,但关于 CYP2D6 基因型/表型对 SSRIs 反应及其不良反应影响的数据很少。因此,基于 CYP2D6 基因型/表型调整 SSRIs 剂量的建议可能还不成熟。许多临床研究表明,CYP2D6 基因型与奋乃静、氯氮平、利培酮和氟哌啶醇的稳态浓度之间存在显著关系。然而,关于 CYP2D6 基因型与传统抗精神病药物引起的帕金森病或迟发性运动障碍治疗之间关系的研究结果相互矛盾,这可能是由于样本量小、纳入 CYP2D6 代谢差异的抗精神病药物以及合并用药。CYP2D6 表型和基因型分析似乎有助于预测一些经典抗精神病药物的稳态浓度,但它们在预测临床效果方面的有用性必须加以探索。许多抗精神病药物,包括氟哌啶醇、氯丙嗪、氟奋乃静、奋乃静、利培酮和硫利达嗪,都需要进行治疗药物监测,这些药物都由 CYP2D6 代谢。因此,可以将 CYP2D6 的治疗药物监测和遗传检测合并到临床实践中。多种阿片类药物的 O-去甲基代谢产物的形成存在明显的基因剂量效应,但这种临床意义可能很小,因为在代谢不良者中(PMs),阿片类药物的镇痛效果没有改变。CYP2D6 遗传失活导致缺乏吗啡形成而使可待因无效,减少活性 O-去甲基-曲马多的形成而降低曲马多的疗效,并降低美沙酮的清除率。遗传引发的药物相互作用可能使标准阿片类药物的剂量有毒。由于 CYP2D6 在他莫昔芬代谢和激活中的重要作用,PMs 可能表现出治疗失败,超快代谢者(UMs)可能经历不良反应和毒性。对于 Endoxifen 和 4-OH-他莫昔芬的形成,存在明显的基因-浓度效应。携带 CYP2D6*4、*5、10 或41 与明显降低抗雌激素代谢产物形成相关的乳腺癌患者用他莫昔芬治疗后,乳腺癌复发和无复发生存期明显缩短。许多研究表明,CYP2D6 遗传状态是乳腺癌女性他莫昔芬治疗结果的独立预测因素,但其他研究并未观察到这种关系。因此,通过预先进行 CYP2D6 的遗传评估,似乎可以实现更有利的他莫昔芬治疗,并且在确定患者的 CYP2D6 基因型时可能需要适当的剂量调整。多拉司琼、昂丹司琼和托烷司琼部分由 CYP2D6 代谢,在 UMs 中的效果不如其他患者。总体而言,只有曲马多存在明显的基因-浓度关系。在进行止吐治疗之前进行 CYP2D6 基因筛查可能允许修改止吐药物的剂量。另一种选择是使用代谢独立于 CYP2D6 的 5-羟色胺药物,如格拉司琼,这将避免基因分型的需要,并可能导致药物反应的改善。迄今为止,对于大多数主要由 CYP2D6 代谢的临床重要药物,大多数 CYP2D6 等位基因的功能影响尚未系统评估,尽管已经确定了一些非常有限的药物的初步证据。关于 CYP2D6 多态性的大多数报告的体内药代动力学数据来自少数几种药物的单次剂量和稳态药代动力学研究。大多数药物研究中 CYP2D6 多态性的药效学数据很少。鉴于 CYP2D6 基因型检测尚未在临床实践中常规进行,并且基因型-表型、基因-浓度和基因-剂量关系存在不确定性,因此需要在大型队列中进行更多的关于 CYP2D6 依赖性药物代谢的临床影响的前瞻性研究。