Suppr超能文献

探索甲烷代谢:酶、区室与网络

Navigating methane metabolism: Enzymes, compartments, and networks.

作者信息

Collins David A, Kalyuzhnaya Marina G

机构信息

Department of Biology, San Diego State University, San Diego, CA, United States.

Department of Biology, San Diego State University, San Diego, CA, United States.

出版信息

Methods Enzymol. 2018;613:349-383. doi: 10.1016/bs.mie.2018.10.010. Epub 2018 Nov 24.

Abstract

Microbial methane utilization-a key node in the global carbon cycle-controls and often eliminates emission of methane into the atmosphere. The diversity and distribution of microbes capable of methane oxidation is astounding. However, from a biochemical point of view, only a very narrow set of unique enzymes underlies their metabolic capabilities. Despite this restriction, the successful integration of the enzymes into nonmethanotrophs, if judged by the ability of the trait to grow on methane, remains to be achieved. Failures and small victories with heterologous expression have highlighted a set of challenges linked to structure, compartmentalization, and regulation of the methanotrophic metabolic network. A better understanding of how these challenges are handled by cells of native methane-consuming bacteria is required. In this chapter we focus on key experimental aspects of working with native methanotrophic bacteria, including routine cultivation strategies, lab-scale bioreactor setups, genetic alteration, imaging, and basic -omic-level approaches.

摘要

微生物甲烷利用——全球碳循环中的一个关键节点——控制并常常消除甲烷向大气中的排放。能够进行甲烷氧化的微生物的多样性和分布令人惊叹。然而,从生化角度来看,它们的代谢能力仅基于非常有限的一组独特酶。尽管存在这种限制,但如果以在甲烷上生长的能力来判断,将这些酶成功整合到非甲烷营养菌中仍有待实现。异源表达的失败和小成功凸显了与甲烷营养代谢网络的结构、区室化和调控相关的一系列挑战。需要更好地了解天然耗甲烷细菌的细胞如何应对这些挑战。在本章中,我们重点关注与天然甲烷营养细菌相关的关键实验方面,包括常规培养策略、实验室规模的生物反应器设置、基因改造、成像以及基础组学水平的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验