Suppr超能文献

在产甲烷菌中发现高效甲烷生物催化作用。

Highly efficient methane biocatalysis revealed in a methanotrophic bacterium.

机构信息

Department of Microbiology, University of Washington, Box 355014, Seattle, Washington 98195, USA.

出版信息

Nat Commun. 2013;4:2785. doi: 10.1038/ncomms3785.

Abstract

Methane is an essential component of the global carbon cycle and one of the most powerful greenhouse gases, yet it is also a promising alternative source of carbon for the biological production of value-added chemicals. Aerobic methane-consuming bacteria (methanotrophs) represent a potential biological platform for methane-based biocatalysis. Here we use a multi-pronged systems-level approach to reassess the metabolic functions for methane utilization in a promising bacterial biocatalyst. We demonstrate that methane assimilation is coupled with a highly efficient pyrophosphate-mediated glycolytic pathway, which under oxygen limitation participates in a novel form of fermentation-based methanotrophy. This surprising discovery suggests a novel mode of methane utilization in oxygen-limited environments, and opens new opportunities for a modular approach towards producing a variety of excreted chemical products using methane as a feedstock.

摘要

甲烷是全球碳循环的重要组成部分,也是最强大的温室气体之一,但它也是生物生产有价值化学品的碳的有前途的替代来源。好氧甲烷消耗细菌(甲烷营养菌)代表了基于甲烷的生物催化的潜在生物平台。在这里,我们使用多管齐下的系统水平方法来重新评估有前途的细菌生物催化剂中甲烷利用的代谢功能。我们证明甲烷同化与高效的焦磷酸介导的糖酵解途径偶联,在氧气限制下,该途径参与了新型基于发酵的甲烷营养作用。这一惊人的发现表明了在氧气限制环境中利用甲烷的一种新方式,并为使用甲烷作为原料生产各种分泌化学产品的模块化方法开辟了新的机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验