Department of Microbiology, University of Washington, Box 355014, Seattle, Washington 98195, USA.
Nat Commun. 2013;4:2785. doi: 10.1038/ncomms3785.
Methane is an essential component of the global carbon cycle and one of the most powerful greenhouse gases, yet it is also a promising alternative source of carbon for the biological production of value-added chemicals. Aerobic methane-consuming bacteria (methanotrophs) represent a potential biological platform for methane-based biocatalysis. Here we use a multi-pronged systems-level approach to reassess the metabolic functions for methane utilization in a promising bacterial biocatalyst. We demonstrate that methane assimilation is coupled with a highly efficient pyrophosphate-mediated glycolytic pathway, which under oxygen limitation participates in a novel form of fermentation-based methanotrophy. This surprising discovery suggests a novel mode of methane utilization in oxygen-limited environments, and opens new opportunities for a modular approach towards producing a variety of excreted chemical products using methane as a feedstock.
甲烷是全球碳循环的重要组成部分,也是最强大的温室气体之一,但它也是生物生产有价值化学品的碳的有前途的替代来源。好氧甲烷消耗细菌(甲烷营养菌)代表了基于甲烷的生物催化的潜在生物平台。在这里,我们使用多管齐下的系统水平方法来重新评估有前途的细菌生物催化剂中甲烷利用的代谢功能。我们证明甲烷同化与高效的焦磷酸介导的糖酵解途径偶联,在氧气限制下,该途径参与了新型基于发酵的甲烷营养作用。这一惊人的发现表明了在氧气限制环境中利用甲烷的一种新方式,并为使用甲烷作为原料生产各种分泌化学产品的模块化方法开辟了新的机会。