Suppr超能文献

一种基于变分贝叶斯优化的迭代非线性滤波器。

An Iterative Nonlinear Filter Using Variational Bayesian Optimization.

机构信息

School of Automation, Northwestern Polytechnical University, Xi'an 710072, China.

Key Laboratory of Information Fusion Technology, Ministry of Education, Xi'an 710072, China.

出版信息

Sensors (Basel). 2018 Dec 1;18(12):4222. doi: 10.3390/s18124222.

Abstract

We propose an iterative nonlinear estimator based on the technique of variational Bayesian optimization. The posterior distribution of the underlying system state is approximated by a solvable variational distribution approached iteratively using evidence lower bound optimization subject to a minimal weighted Kullback-Leibler divergence, where a penalty factor is considered to adjust the step size of the iteration. Based on linearization, the iterative nonlinear filter is derived in a closed-form. The performance of the proposed algorithm is compared with several nonlinear filters in the literature using simulated target tracking examples.

摘要

我们提出了一种基于变分贝叶斯优化技术的迭代非线性估计器。通过使用证据下界优化来逼近底层系统状态的后验分布,其中考虑了一个惩罚因子来调整迭代步长,以最小化加权 Kullback-Leibler 散度。基于线性化,推导出了一种闭式迭代非线性滤波器。通过模拟目标跟踪示例,将所提出的算法与文献中的几种非线性滤波器进行了性能比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ef2/6308601/f03a3434167d/sensors-18-04222-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验