Suppr超能文献

变分贝叶斯近似(VBA):不同优化算法的实现与比较

Variational Bayesian Approximation (VBA): Implementation and Comparison of Different Optimization Algorithms.

作者信息

Fallah Mortezanejad Seyedeh Azadeh, Mohammad-Djafari Ali

机构信息

School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China.

International Science Consulting and Training (ISCT), 91440 Bures sur Yvette, France.

出版信息

Entropy (Basel). 2024 Aug 20;26(8):707. doi: 10.3390/e26080707.

Abstract

In any Bayesian computations, the first step is to derive the joint distribution of all the unknown variables given the observed data. Then, we have to do the computations. There are four general methods for performing computations: Joint MAP optimization; Posterior expectation computations that require integration methods; Sampling-based methods, such as MCMC, slice sampling, nested sampling, etc., for generating samples and numerically computing expectations; and finally, Variational Bayesian Approximation (VBA). In this last method, which is the focus of this paper, the objective is to search for an approximation for the joint posterior with a simpler one that allows for analytical computations. The main tool in VBA is to use the Kullback-Leibler Divergence (KLD) as a criterion to obtain that approximation. Even if, theoretically, this can be conducted formally, for practical reasons, we consider the case where the joint distribution is in the exponential family, and so is its approximation. In this case, the KLD becomes a function of the usual parameters or the natural parameters of the exponential family, where the problem becomes parametric optimization. Thus, we compare four optimization algorithms: general alternate functional optimization; parametric gradient-based with the normal and natural parameters; and the natural gradient algorithm. We then study their relative performances on three examples to demonstrate the implementation of each algorithm and their efficiency performance.

摘要

在任何贝叶斯计算中,第一步是在给定观测数据的情况下推导所有未知变量的联合分布。然后,我们必须进行计算。有四种进行计算的通用方法:联合最大后验概率(MAP)优化;需要积分方法的后验期望计算;基于采样的方法,如马尔可夫链蒙特卡罗(MCMC)、切片采样、嵌套采样等,用于生成样本并数值计算期望;最后是变分贝叶斯近似(VBA)。在本文重点关注的最后一种方法中,目标是用一个更简单的分布来搜索联合后验的近似,以便进行解析计算。VBA的主要工具是使用库尔贝克 - 莱布勒散度(KLD)作为标准来获得该近似。即使从理论上讲这可以正式进行,但出于实际原因,我们考虑联合分布属于指数族且其近似也属于指数族的情况。在这种情况下,KLD成为指数族通常参数或自然参数的函数,此时问题就变成了参数优化。因此,我们比较四种优化算法:一般交替函数优化;基于参数梯度的普通参数和自然参数优化;以及自然梯度算法。然后,我们在三个例子上研究它们的相对性能,以展示每种算法的实现及其效率表现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f7e/11353284/2d6354aad970/entropy-26-00707-g001a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验