Suppr超能文献

具有一体式忆阻和神经形态功能的自限性单纳米线系统。

Self-limited single nanowire systems combining all-in-one memristive and neuromorphic functionalities.

机构信息

Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino, Italy.

Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia, C.so Trento 21, 10129, Torino, Italy.

出版信息

Nat Commun. 2018 Dec 4;9(1):5151. doi: 10.1038/s41467-018-07330-7.

Abstract

The ability for artificially reproducing human brain type signals' processing is one of the main challenges in modern information technology, being one of the milestones for developing global communicating networks and artificial intelligence. Electronic devices termed memristors have been proposed as effective artificial synapses able to emulate the plasticity of biological counterparts. Here we report for the first time a single crystalline nanowire based model system capable of combining all memristive functions - non-volatile bipolar memory, multilevel switching, selector and synaptic operations imitating Ca dynamics of biological synapses. Besides underlying common electrochemical fundamentals of biological and artificial redox-based synapses, a detailed analysis of the memristive mechanism revealed the importance of surfaces and interfaces in crystalline materials. Our work demonstrates the realization of self-assembled, self-limited devices feasible for implementation via bottom up approach, as an attractive solution for the ultimate system miniaturization needed for the hardware realization of brain-inspired systems.

摘要

人工复制人脑类型信号处理的能力是现代信息技术的主要挑战之一,也是开发全球通信网络和人工智能的里程碑之一。已经提出了被称为忆阻器的电子设备作为能够模拟生物对应物的可塑性的有效人工突触。在这里,我们首次报道了一个基于单晶纳米线的模型系统,该系统能够结合所有忆阻功能 - 非易失性双极存储器、多级开关、模拟生物突触 Ca 动力学的选择器和突触操作。除了生物和基于人工氧化还原的突触的共同电化学基础之外,对忆阻机制的详细分析表明了晶体材料中表面和界面的重要性。我们的工作证明了自组装、自限器件的实现是可行的,通过自下而上的方法实现,这是实现硬件实现脑启发系统所需的最终系统小型化的有吸引力的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4b2/6279771/8f805e2b476f/41467_2018_7330_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验