Department of Materials Science and Engineering, University of California, Los Angeles, CA, USA.
State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and School of Physics and Electronics, Hunan University, Changsha, China.
Nature. 2018 May;557(7707):696-700. doi: 10.1038/s41586-018-0129-8. Epub 2018 May 16.
The junctions formed at the contact between metallic electrodes and semiconductor materials are crucial components of electronic and optoelectronic devices . Metal-semiconductor junctions are characterized by an energy barrier known as the Schottky barrier, whose height can, in the ideal case, be predicted by the Schottky-Mott rule on the basis of the relative alignment of energy levels. Such ideal physics has rarely been experimentally realized, however, because of the inevitable chemical disorder and Fermi-level pinning at typical metal-semiconductor interfaces. Here we report the creation of van der Waals metal-semiconductor junctions in which atomically flat metal thin films are laminated onto two-dimensional semiconductors without direct chemical bonding, creating an interface that is essentially free from chemical disorder and Fermi-level pinning. The Schottky barrier height, which approaches the Schottky-Mott limit, is dictated by the work function of the metal and is thus highly tunable. By transferring metal films (silver or platinum) with a work function that matches the conduction band or valence band edges of molybdenum sulfide, we achieve transistors with a two-terminal electron mobility at room temperature of 260 centimetres squared per volt per second and a hole mobility of 175 centimetres squared per volt per second. Furthermore, by using asymmetric contact pairs with different work functions, we demonstrate a silver/molybdenum sulfide/platinum photodiode with an open-circuit voltage of 1.02 volts. Our study not only experimentally validates the fundamental limit of ideal metal-semiconductor junctions but also defines a highly efficient and damage-free strategy for metal integration that could be used in high-performance electronics and optoelectronics.
金属电极与半导体材料之间形成的结是电子和光电子器件的关键组成部分。金属-半导体结的特点是存在一个称为肖特基势垒的能垒,其高度在理想情况下可以根据能级的相对排列,用肖特基-莫特定则来预测。然而,由于典型金属-半导体界面上不可避免的化学无序和费米能级钉扎,这种理想的物理状态很少在实验中实现。在这里,我们报告了范德华金属-半导体结的形成,其中原子级平坦的金属薄膜层压在二维半导体上,而没有直接的化学键合,从而形成了基本上没有化学无序和费米能级钉扎的界面。肖特基势垒高度接近肖特基-莫特极限,由金属的功函数决定,因此具有高度可调性。通过转移功函数与二硫化钼的导带或价带边缘匹配的金属薄膜(银或铂),我们实现了室温下具有 260 厘米平方每秒每伏特每秒的电子迁移率和 175 厘米平方每秒每伏特每秒的空穴迁移率的晶体管。此外,通过使用具有不同功函数的不对称接触对,我们展示了具有 1.02 伏特开路电压的银/二硫化钼/铂光电二极管。我们的研究不仅实验验证了理想金属-半导体结的基本限制,而且还定义了一种高效、无损伤的金属集成策略,可用于高性能电子和光电子学。