Department of Chemistry, University of Copenhagen, Copenhagen, Denmark.
Van Swinderen Institute, University of Groningen, Groningen, The Netherlands.
J Comput Chem. 2018 Dec 15;39(32):2647-2666. doi: 10.1002/jcc.25712.
In this article, the RPA(D) and HRPA(D) models for the calculation of linear response functions are presented. The performance of the new RPA(D) and HRPA(D) models is compared to the performance of the established RPA, HRPA, and SOPPA models in calculations of indirect nuclear spin-spin coupling constants using the CCSD model as a reference. The doubles correction offers a significant improvement on both the RPA and HRPA models; however, the improvement is more dramatic in the case of the RPA model. For all coupling types investigated in this study, the results obtained using the HRPA(D) model are comparable in accuracy to those given by the SOPPA model, while requiring between 30% and 90% of the calculation time needed for SOPPA. The RPA(D) model, while of slightly lower accuracy compared to the CCSD model than HRPA(D), offered calculation times of only approximately 25% of those required for SOPPA for all the investigated molecules. © 2018 Wiley Periodicals, Inc.
本文提出了用于计算线性响应函数的 RPA(D)和 HRPA(D)模型。将新的 RPA(D)和 HRPA(D)模型的性能与已建立的 RPA、HRPA 和 SOPPA 模型的性能进行了比较,这些模型在使用 CCSD 模型作为参考计算间接核自旋-自旋耦合常数时的性能进行了比较。双修正对 RPA 和 HRPA 模型都有显著的改进;然而,在 RPA 模型中,改进更为显著。对于本研究中调查的所有耦合类型,使用 HRPA(D)模型获得的结果在准确性上与 SOPPA 模型相当,而所需的计算时间仅为 SOPPA 的 30%至 90%。与 HRPA(D)相比,RPA(D)模型的准确性略低于 CCSD 模型,但对于所有研究的分子,其计算时间仅为 SOPPA 的约 25%。© 2018 Wiley Periodicals, Inc.