Beizaei Nazanin, Sauer Stephan P A
Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.
J Phys Chem A. 2021 May 6;125(17):3785-3792. doi: 10.1021/acs.jpca.1c01931. Epub 2021 Apr 26.
Due to the importance of predicting static and dynamic polarizabilities, the performance of various correlated linear response methods including random phase approximation (RPA), RPA(D), higher-order random phase approximation (HRPA), HRPA(D), second-order polarization propagator approximation (SOPPA), SOPPA(CC2), SOPPA(CCSD), CC2, and CCSD has been evaluated against CCSD(T) (static case) and CCSD (dynamic cases) for the T145 set of 145 organic molecules. The benchmark reveals that the HRPA(D) method has the best performance for both static and dynamic polarizabilities apart from CCSD. RPA(D) ranks second for the dynamic cases and third for the static case. Using coupled-cluster amplitudes in SOPPA(CCSD) and SOPPA(CC2), the SOPPA results are significantly improved. The HRPA method has the largest deviations from the reference values for both cases. In general, according to the performance and computational cost of the methods, the HRPA(D) and RPA(D) methods are proposed for calculations of static and dynamic polarizabilities of this and similar sets of molecules.
由于预测静态和动态极化率的重要性,针对145种有机分子的T145数据集,已根据CCSD(T)(静态情况)和CCSD(动态情况)评估了包括随机相位近似(RPA)、RPA(D)、高阶随机相位近似(HRPA)、HRPA(D)、二阶极化传播子近似(SOPPA)、SOPPA(CC2)、SOPPA(CCSD)、CC2和CCSD在内的各种相关线性响应方法的性能。基准测试表明,除CCSD外,HRPA(D)方法在静态和动态极化率方面均具有最佳性能。RPA(D)在动态情况下排名第二,在静态情况下排名第三。通过在SOPPA(CCSD)和SOPPA(CC2)中使用耦合簇振幅,SOPPA结果得到了显著改善。HRPA方法在这两种情况下与参考值的偏差最大。总体而言,根据这些方法的性能和计算成本,建议使用HRPA(D)和RPA(D)方法来计算此类及类似分子集的静态和动态极化率。