Instituto de Nanociencia y Nanotecnología, CNEA, CONICET, Centro Atómico Bariloche, Av. Bustillo 9500 (8400) S. C. Bariloche, Argentina.
Nanoscale. 2019 Feb 14;11(7):3164-3172. doi: 10.1039/c8nr07834c.
We report a simple and effective way to control the heat generation of a magnetic colloid under alternate magnetic fields by changing the shell composition of bimagnetic core-shell Fe3O4/ZnxCo1-xFe2O4 nanoparticles. The core-shell structure constitutes a magnetically-coupled biphase system, with an effective anisotropy that can be tuned by the substitution of Co2+ by Zn2+ ions in the shell. Magnetic hyperthermia experiments of nanoparticles dispersed in hexane and butter oil showed that the magnetic relaxation is dominated by Brown relaxation mechanism in samples with higher anisotropy (i.e., larger concentration of Co within the shell) yielding high specific power absorption values in low viscosity media as hexane. Increasing the Zn concentration of the shell, diminishes the magnetic anisotropy, which results in a change to a Néel relaxation that dominates the process when the nanoparticles are dispersed in a high-viscosity medium. We demonstrate that tuning the Zn contents at the shell of these exchange-coupled core/shell nanoparticles provides a way to control the magnetic anisotropy without loss of saturation magnetization. This ability is an essential prerequisite for most biomedical applications, where high viscosities and capturing mechanisms are present.
我们报告了一种简单有效的方法,通过改变双磁核壳 Fe3O4/ZnxCo1-xFe2O4 纳米粒子的壳组成,控制交变磁场下磁性胶体的发热。核壳结构构成了一个磁耦合的双相系统,其有效各向异性可以通过壳中 Co2+被 Zn2+离子取代来调节。在己烷和黄油油中分散的纳米粒子的磁热疗实验表明,磁弛豫由具有较高各向异性的样品中的布朗弛豫机制主导(即壳中 Co 的浓度较大),在低粘度介质(如己烷)中产生高比功率吸收值。增加壳中 Zn 的浓度会降低磁各向异性,导致在高粘度介质中分散时,纳米粒子的弛豫由奈耳弛豫主导。我们证明,通过调节这些交换耦合核/壳纳米粒子壳中的 Zn 含量,可以在不损失饱和磁化强度的情况下控制磁各向异性。这种能力是大多数生物医学应用的基本前提,因为这些应用中存在高粘度和捕获机制。
Nanomaterials (Basel). 2022-1-14
Int J Mol Sci. 2022-11-26
Mater Sci Eng C Mater Biol Appl. 2014-9
ACS Appl Mater Interfaces. 2025-3-5
Nanomaterials (Basel). 2019-10-14
ACS Appl Mater Interfaces. 2025-3-5
Nanomaterials (Basel). 2023-5-19
Sensors (Basel). 2022-11-14
Nanoscale Adv. 2021-1-15
Nanoscale Adv. 2021-1-21
Materials (Basel). 2022-2-11
Nanomaterials (Basel). 2022-1-14