文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

控制双磁核壳纳米粒子中用于磁热疗的主导磁弛豫机制。

Controlling the dominant magnetic relaxation mechanisms for magnetic hyperthermia in bimagnetic core-shell nanoparticles.

机构信息

Instituto de Nanociencia y Nanotecnología, CNEA, CONICET, Centro Atómico Bariloche, Av. Bustillo 9500 (8400) S. C. Bariloche, Argentina.

出版信息

Nanoscale. 2019 Feb 14;11(7):3164-3172. doi: 10.1039/c8nr07834c.


DOI:10.1039/c8nr07834c
PMID:30520920
Abstract

We report a simple and effective way to control the heat generation of a magnetic colloid under alternate magnetic fields by changing the shell composition of bimagnetic core-shell Fe3O4/ZnxCo1-xFe2O4 nanoparticles. The core-shell structure constitutes a magnetically-coupled biphase system, with an effective anisotropy that can be tuned by the substitution of Co2+ by Zn2+ ions in the shell. Magnetic hyperthermia experiments of nanoparticles dispersed in hexane and butter oil showed that the magnetic relaxation is dominated by Brown relaxation mechanism in samples with higher anisotropy (i.e., larger concentration of Co within the shell) yielding high specific power absorption values in low viscosity media as hexane. Increasing the Zn concentration of the shell, diminishes the magnetic anisotropy, which results in a change to a Néel relaxation that dominates the process when the nanoparticles are dispersed in a high-viscosity medium. We demonstrate that tuning the Zn contents at the shell of these exchange-coupled core/shell nanoparticles provides a way to control the magnetic anisotropy without loss of saturation magnetization. This ability is an essential prerequisite for most biomedical applications, where high viscosities and capturing mechanisms are present.

摘要

我们报告了一种简单有效的方法,通过改变双磁核壳 Fe3O4/ZnxCo1-xFe2O4 纳米粒子的壳组成,控制交变磁场下磁性胶体的发热。核壳结构构成了一个磁耦合的双相系统,其有效各向异性可以通过壳中 Co2+被 Zn2+离子取代来调节。在己烷和黄油油中分散的纳米粒子的磁热疗实验表明,磁弛豫由具有较高各向异性的样品中的布朗弛豫机制主导(即壳中 Co 的浓度较大),在低粘度介质(如己烷)中产生高比功率吸收值。增加壳中 Zn 的浓度会降低磁各向异性,导致在高粘度介质中分散时,纳米粒子的弛豫由奈耳弛豫主导。我们证明,通过调节这些交换耦合核/壳纳米粒子壳中的 Zn 含量,可以在不损失饱和磁化强度的情况下控制磁各向异性。这种能力是大多数生物医学应用的基本前提,因为这些应用中存在高粘度和捕获机制。

相似文献

[1]
Controlling the dominant magnetic relaxation mechanisms for magnetic hyperthermia in bimagnetic core-shell nanoparticles.

Nanoscale. 2019-2-14

[2]
Adjusting the Néel relaxation time of Fe3O4/ZnxCo1-xFe2O4 core/shell nanoparticles for optimal heat generation in magnetic hyperthermia.

Nanotechnology. 2020-10-21

[3]
Adjusting the Néel relaxation time of FeO/Zn Co FeO core/shell nanoparticles for optimal heat generation in magnetic hyperthermia.

Nanotechnology. 2020-11-19

[4]
Tailoring Interfacial Exchange Anisotropy in Hard-Soft Core-Shell Ferrite Nanoparticles for Magnetic Hyperthermia Applications.

Nanomaterials (Basel). 2022-1-14

[5]
Hyperthermia of Magnetically Soft-Soft Core-Shell Ferrite Nanoparticles.

Int J Mol Sci. 2022-11-26

[6]
Tuning the coercivity and exchange bias by controlling the interface coupling in bimagnetic core/shell nanoparticles.

Nanoscale. 2017-7-27

[7]
Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.

Mater Sci Eng C Mater Biol Appl. 2014-9

[8]
Model Driven Optimization of Magnetic Anisotropy of Exchange-coupled Core-Shell Ferrite Nanoparticles for Maximal Hysteretic Loss.

Chem Mater. 2015-11-10

[9]
Control of Anisotropy and Magnetic Hyperthermia Effect by Addition of Cobalt on Magnetite Nanoparticles.

ACS Appl Mater Interfaces. 2025-3-5

[10]
Experimental Evaluation on the Heating Efficiency of Magnetoferritin Nanoparticles in an Alternating Magnetic Field.

Nanomaterials (Basel). 2019-10-14

引用本文的文献

[1]
Control of Anisotropy and Magnetic Hyperthermia Effect by Addition of Cobalt on Magnetite Nanoparticles.

ACS Appl Mater Interfaces. 2025-3-5

[2]
Hard-Soft Core-Shell Architecture Formation from Cubic Cobalt Ferrite Nanoparticles.

Nanomaterials (Basel). 2023-5-19

[3]
Role of Dipolar Interactions on the Determination of the Effective Magnetic Anisotropy in Iron Oxide Nanoparticles.

Adv Sci (Weinh). 2023-2

[4]
Frequency Mixing Magnetic Detection Setup Employing Permanent Ring Magnets as a Static Offset Field Source.

Sensors (Basel). 2022-11-14

[5]
Coupled hard-soft spinel ferrite-based core-shell nanoarchitectures: magnetic properties and heating abilities.

Nanoscale Adv. 2020-5-6

[6]
Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications.

Nanoscale Adv. 2021-1-15

[7]
Fine tuning and optimization of magnetic hyperthermia treatments using versatile trapezoidal driving-field waveforms.

Nanoscale Adv. 2020-9-1

[8]
On the synthesis of bi-magnetic manganese ferrite-based core-shell nanoparticles.

Nanoscale Adv. 2021-1-21

[9]
Interfacial Effect on Photo-Modulated Magnetic Properties of Core/Shell-Structured NiFe/NiFeO Nanoparticles.

Materials (Basel). 2022-2-11

[10]
Tailoring Interfacial Exchange Anisotropy in Hard-Soft Core-Shell Ferrite Nanoparticles for Magnetic Hyperthermia Applications.

Nanomaterials (Basel). 2022-1-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索