de Almeida Adriele Aparecida, Fabris Fernando, da Silva Gustavo Soares, Pirota Kleber Roberto, Knobel Marcelo, Muraca Diego
Instituto de Física "Gleb Wataghin" - Universidade de Campinas, 13083-859 Campinas, São Paulo, Brazil.
ACS Appl Mater Interfaces. 2025 Mar 5;17(9):13083-13093. doi: 10.1021/acsami.4c03343. Epub 2024 Jul 15.
Magnetic hyperthermia (MH) has emerged as a promising technology with diverse applications in medical and technological fields, leveraging the remote induction of temperature elevation through an alternating magnetic field. While FeO nanoparticles with an average size around 12-25 nm are commonly employed in MH systems, this study introduces a strategy to produce smaller particles (less than or equal to 10 nm) with enhanced heating efficiency, as measured by specific power absorption (SPA). We conducted an exhaustive and detailed investigation into the morphological and magnetic properties of CoFeO nanoparticles, aiming to optimize their MH response. By varying the Co content, we successfully tuned the effective magnetic anisotropy while maintaining saturation magnetization nearly constant. The MH analysis indicates that these nanoparticles predominantly heat through the Néel mechanism, demonstrating robust reproducibility across different concentrations, viscosity mediums, and ac field conditions. Notably, we identified an optimal anisotropy or Co concentration that maximizes SPA, crucial for developing magnetic systems requiring particles with specific sizes. This work contributes to advancing the understanding and application of MH, particularly in tailoring nanoparticle properties for targeted and efficient heat generation in various contexts.
磁热疗(MH)已成为一项有前景的技术,在医学和技术领域有多种应用,它利用交变磁场远程诱导温度升高。虽然平均尺寸约为12 - 25纳米的FeO纳米颗粒通常用于MH系统,但本研究引入了一种策略来制备尺寸更小(小于或等于10纳米)且加热效率更高的颗粒,通过比功率吸收(SPA)来衡量。我们对CoFeO纳米颗粒的形态和磁性进行了详尽而细致的研究,旨在优化它们的磁热疗响应。通过改变Co含量,我们成功地调整了有效磁各向异性,同时使饱和磁化强度几乎保持恒定。磁热疗分析表明,这些纳米颗粒主要通过奈尔机制加热,在不同浓度、粘度介质和交流场条件下都表现出强大的可重复性。值得注意的是,我们确定了一个能使SPA最大化的最佳各向异性或Co浓度,这对于开发需要特定尺寸颗粒的磁性系统至关重要。这项工作有助于推进对磁热疗的理解和应用,特别是在为各种情况下的靶向和高效发热定制纳米颗粒特性方面。