文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

交变磁场中磁性铁蛋白纳米颗粒加热效率的实验评估

Experimental Evaluation on the Heating Efficiency of Magnetoferritin Nanoparticles in an Alternating Magnetic Field.

作者信息

Xu Huangtao, Pan Yongxin

机构信息

Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.

Institutions Earth Science, Chinese Academy of Sciences, Beijing 100029, China.

出版信息

Nanomaterials (Basel). 2019 Oct 14;9(10):1457. doi: 10.3390/nano9101457.


DOI:10.3390/nano9101457
PMID:31615049
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6835341/
Abstract

The superparamagnetic substance magnetoferritin is a potential bio-nanomaterial for tumor magnetic hyperthermia because of its active tumor-targeting outer protein shell, uniform and tunable nanosized inner mineral core, monodispersity and good biocompatibility. Here, we evaluated the heating efficiency of magnetoferritin nanoparticles in an alternating magnetic field (AMF). The effects of core-size, Fe concentration, viscosity, and field frequency and amplitude were investigated. Under 805.5 kHz and 19.5 kA/m, temperature rise (ΔT) and specific loss power (SLP) measured on magnetoferritin nanoparticles with core size of 4.8 nm at 5 mg/mL were 14.2 °C (at 6 min) and 68.6 W/g, respectively. The SLP increased with core-size, Fe concentration, AMF frequency, and amplitude. Given that: (1) the SLP was insensitive to viscosity of glycerol-water solutions and (2) both the calculated effective relaxation time and the fitted relaxation time were closer to Néel relaxation time, we propose that the heating generation mechanism of magnetoferritin nanoparticles is dominated by the Néel relaxation. This work provides new insights into the heating efficiency of magnetoferritin and potential future applications for tumor magnetic hyperthermia treatment and heat-triggered drug release.

摘要

超顺磁性物质磁铁蛋白因其具有活性肿瘤靶向性的外层蛋白壳、尺寸均匀且可调的纳米级内部矿物核、单分散性以及良好的生物相容性,是一种用于肿瘤磁热疗的潜在生物纳米材料。在此,我们评估了磁铁蛋白纳米颗粒在交变磁场(AMF)中的加热效率。研究了核尺寸、铁浓度、粘度以及场频率和振幅的影响。在805.5 kHz和19.5 kA/m条件下,对于浓度为5 mg/mL、核尺寸为4.8 nm的磁铁蛋白纳米颗粒,测得的温度升高(ΔT)和比损耗功率(SLP)分别为14.2℃(在6分钟时)和68.6 W/g。SLP随核尺寸、铁浓度、AMF频率和振幅的增加而增加。鉴于:(1)SLP对甘油 - 水溶液的粘度不敏感;(2)计算得到的有效弛豫时间和拟合弛豫时间都更接近奈尔弛豫时间,我们提出磁铁蛋白纳米颗粒的发热机制主要由奈尔弛豫主导。这项工作为磁铁蛋白的加热效率以及肿瘤磁热疗和热触发药物释放的潜在未来应用提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fba/6835341/c989713131c3/nanomaterials-09-01457-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fba/6835341/5dc26760c212/nanomaterials-09-01457-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fba/6835341/193eb14bcd2e/nanomaterials-09-01457-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fba/6835341/5ac795056ad8/nanomaterials-09-01457-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fba/6835341/fb38b91ca665/nanomaterials-09-01457-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fba/6835341/5c813d1c287d/nanomaterials-09-01457-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fba/6835341/9cdcfb0569f6/nanomaterials-09-01457-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fba/6835341/59fb0be5bc33/nanomaterials-09-01457-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fba/6835341/f644c87bbd1b/nanomaterials-09-01457-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fba/6835341/3064bec39ddf/nanomaterials-09-01457-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fba/6835341/c989713131c3/nanomaterials-09-01457-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fba/6835341/5dc26760c212/nanomaterials-09-01457-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fba/6835341/193eb14bcd2e/nanomaterials-09-01457-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fba/6835341/5ac795056ad8/nanomaterials-09-01457-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fba/6835341/fb38b91ca665/nanomaterials-09-01457-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fba/6835341/5c813d1c287d/nanomaterials-09-01457-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fba/6835341/9cdcfb0569f6/nanomaterials-09-01457-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fba/6835341/59fb0be5bc33/nanomaterials-09-01457-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fba/6835341/f644c87bbd1b/nanomaterials-09-01457-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fba/6835341/3064bec39ddf/nanomaterials-09-01457-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fba/6835341/c989713131c3/nanomaterials-09-01457-g010.jpg

相似文献

[1]
Experimental Evaluation on the Heating Efficiency of Magnetoferritin Nanoparticles in an Alternating Magnetic Field.

Nanomaterials (Basel). 2019-10-14

[2]
Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.

Nanomaterials (Basel). 2020-12-26

[3]
Enhanced Magnetic Hyperthermia of Magnetoferritin through Synthesis at Elevated Temperature.

Int J Mol Sci. 2022-4-4

[4]
Adjusting the Néel relaxation time of Fe3O4/ZnxCo1-xFe2O4 core/shell nanoparticles for optimal heat generation in magnetic hyperthermia.

Nanotechnology. 2020-10-21

[5]
Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles.

Mater Sci Eng C Mater Biol Appl. 2020-12

[6]
Engineering Core-Shell Structures of Magnetic Ferrite Nanoparticles for High Hyperthermia Performance.

Nanomaterials (Basel). 2020-5-21

[7]
Assessing the Heat Generation and Self-Heating Mechanism of Superparamagnetic FeO Nanoparticles for Magnetic Hyperthermia Application: The Effects of Concentration, Frequency, and Magnetic Field.

Nanomaterials (Basel). 2023-1-22

[8]
Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles.

Sci Rep. 2017-7-27

[9]
Magnetothermoacoustics from magnetic nanoparticles by short bursting or frequency chirped alternating magnetic field: a theoretical feasibility analysis.

Med Phys. 2013-6

[10]
Maghemite (γ-FeO) and γ-FeO-TiO Nanoparticles for Magnetic Hyperthermia Applications: Synthesis, Characterization and Heating Efficiency.

Materials (Basel). 2021-9-30

引用本文的文献

[1]
A Critical Scrutiny on Liposomal Nanoparticles Drug Carriers as Modelled by Topotecan Encapsulation and Release in Treating Cancer.

Evid Based Complement Alternat Med. 2022-8-9

[2]
Enhanced Magnetic Hyperthermia of Magnetoferritin through Synthesis at Elevated Temperature.

Int J Mol Sci. 2022-4-4

[3]
Enhancement of Radio-Thermo-Sensitivity of 5-Iodo-2-Deoxyuridine-Loaded Polymeric-Coated Magnetic Nanoparticles Triggers Apoptosis in U87MG Human Glioblastoma Cancer Cell Line.

Cell Mol Bioeng. 2021-6-18

[4]
F7 and topotecan co-loaded thermosensitive liposome as a nano-drug delivery system for tumor hyperthermia.

Drug Deliv. 2020-12

[5]
Therapeutic Efficiency of Multiple Applications of Magnetic Hyperthermia Technique in Glioblastoma Using Aminosilane Coated Iron Oxide Nanoparticles: In Vitro and In Vivo Study.

Int J Mol Sci. 2020-1-31

本文引用的文献

[1]
Enhancement of Magnetic Hyperthermia by Mixing Synthetic Inorganic and Biomimetic Magnetic Nanoparticles.

Pharmaceutics. 2019-6-11

[2]
Superparamagnetic iron oxide nanoparticulate system: synthesis, targeting, drug delivery and therapy in cancer.

Dalton Trans. 2019-7-2

[3]
Applications of magnetic materials separation in biological nanomedicine.

Electrophoresis. 2019-2-27

[4]
Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications.

Adv Drug Deliv Rev. 2019-1-11

[5]
Positive magnetic resonance angiography using ultrafine ferritin-based iron oxide nanoparticles.

Nanoscale. 2019-2-7

[6]
Recent advances in magnetic fluid hyperthermia for cancer therapy.

Colloids Surf B Biointerfaces. 2018-10-24

[7]
A smart platform for hyperthermia application in cancer treatment: cobalt-doped ferrite nanoparticles mineralized in human ferritin cages.

ACS Nano. 2014-4-8

[8]
Targeted in vivo imaging of microscopic tumors with ferritin-based nanoprobes across biological barriers.

Adv Mater. 2014-2-14

[9]
Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy.

Int J Hyperthermia. 2013-8-22

[10]
Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications.

Sci Rep. 2013

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索