Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America. Author to whom any correspondence should be addressed.
Phys Med Biol. 2018 Dec 21;64(1):015008. doi: 10.1088/1361-6560/aaf5df.
In charged particle therapy, the objective is to exploit both the physical and radiobiological advantages of charged particles to improve the therapeutic index. Use of the beam scanning technique provides the flexibility to implement biological dose optimized intensity-modulated ion therapy (IMIT). An easy-to-implement algorithm was developed in the current study to rapidly generate a uniform biological dose distribution, namely the product of physical dose and the relative biological effectiveness (RBE), within the target volume using scanned ion beams for charged particle radiobiological studies. Protons, helium ions and carbon ions were selected to demonstrate the feasibility and flexibility of our method. The general-purpose Monte Carlo simulation toolkit Geant4 was used for particle tracking and generation of physical and radiobiological data needed for later dose optimizations. The dose optimization algorithm was developed using the Python (version 3) programming language. A constant RBE-weighted dose (RWD) spread-out Bragg peak (SOBP) in a water phantom was selected as the desired target dose distribution to demonstrate the applicability of the optimization algorithm. The mechanistic repair-misrepair-fixation (RMF) model was incorporated into the Monte Carlo particle tracking to generate radiobiological parameters and was used to predict the RBE of cell survival in the iterative process of the biological dose optimization for the three selected ions. The post-optimization generated beam delivery strategy can be used in radiation biology experiments to obtain radiobiological data to further validate and improve the accuracy of the RBE model. This biological dose optimization algorithm developed for radiobiology studies could potentially be extended to implement biologically optimized IMIT plans for patients.
在带电粒子治疗中,目的是利用带电粒子的物理和放射生物学优势来提高治疗指数。使用束扫描技术提供了灵活性,可以实施生物剂量优化的强度调制离子治疗(IMIT)。本研究开发了一种易于实施的算法,用于使用扫描离子束在目标体积内快速生成均匀的生物剂量分布,即物理剂量与相对生物效应(RBE)的乘积,用于带电粒子放射生物学研究。选择质子、氦离子和碳离子来证明我们方法的可行性和灵活性。通用蒙特卡罗模拟工具包 Geant4 用于粒子跟踪和生成用于后续剂量优化的物理和放射生物学数据。剂量优化算法是使用 Python(版本 3)编程语言开发的。水模中的恒定 RBE 加权剂量(RWD)扩展布拉格峰(SOBP)被选为所需的目标剂量分布,以证明优化算法的适用性。机制修复-错误修复-固定(RMF)模型被纳入蒙特卡罗粒子跟踪中,以生成放射生物学参数,并用于在三种选定离子的生物剂量优化迭代过程中预测细胞存活的 RBE。优化后的生成束传递策略可用于放射生物学实验,以获得放射生物学数据,从而进一步验证和提高 RBE 模型的准确性。为放射生物学研究开发的这种生物剂量优化算法有可能扩展到为患者实施生物优化的 IMIT 计划。