Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology in the National Center for Radiation Oncology, Heidelberg, Germany.
Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
Int J Radiat Oncol Biol Phys. 2023 Jul 15;116(4):935-948. doi: 10.1016/j.ijrobp.2023.01.015. Epub 2023 Jan 19.
Helium ions offer intermediate physical and biological properties to the clinically used protons and carbon ions. This work presents the commissioning of the first clinical treatment planning system (TPS) for helium ion therapy with active beam delivery to prepare the first patients' treatment at the Heidelberg Ion-Beam Therapy Center (HIT).
Through collaboration between RaySearch Laboratories and HIT, absorbed and relative biological effectiveness (RBE)-weighted calculation methods were integrated for helium ion beam therapy with raster-scanned delivery in the TPS RayStation. At HIT, a modified microdosimetric kinetic biological model was chosen as reference biological model. TPS absorbed dose predictions were compared against measurements with several devices, using phantoms of different complexities, from homogeneous to heterogeneous anthropomorphic phantoms. RBE and RBE-weighted dose predictions of the TPS were verified against calculations with an independent RBE-weighted dose engine. The patient-specific quality assurance of the first treatment at HIT using helium ion beam with raster-scanned delivery is presented considering standard patient-specific measurements in a water phantom and 2 independent dose calculations with a Monte Carlo or an analytical-based engine.
TPS predictions were consistent with dosimetric measurements and independent dose engines computations for absorbed and RBE-weighted doses. The mean difference between dose measurements to the TPS calculation was 0.2% for spread-out Bragg peaks in water. Verification of the first patient treatment TPS predictions against independent engines for both absorbed and RBE-weighted doses presents differences within 2% in the target and with a maximum deviation of 3.5% in the investigated critical regions of interest.
Helium ion beam therapy has been successfully commissioned and introduced into clinical use. Through comprehensive validation of the absorbed and RBE-weighted dose predictions of the RayStation TPS, the first clinical TPS for helium ion therapy using raster-scanned delivery was employed to plan the first helium patient treatment at HIT.
氦离子为临床应用的质子和碳离子提供了中等的物理和生物学特性。本研究介绍了第一个用于氦离子治疗的临床治疗计划系统(TPS)的调试,该系统采用主动束流传输方式,为海德堡离子束治疗中心(HIT)的首批患者治疗做准备。
通过 RaySearch Laboratories 和 HIT 的合作,TPS RayStation 中集成了用于扫描传输的氦离子束治疗的吸收剂量和相对生物效应(RBE)加权计算方法。在 HIT,选择了一种改良的微剂量动力学生物模型作为参考生物模型。使用不同复杂性的体模,从均匀到异质的人体模型,比较了 TPS 吸收剂量预测与几种设备的测量值。TPS 的 RBE 和 RBE 加权剂量预测与使用独立 RBE 加权剂量引擎的计算进行了验证。介绍了使用扫描传输的氦离子束对 HIT 的首例患者进行特定患者质量保证的情况,考虑了在水模体中进行的标准特定患者测量以及使用蒙特卡罗或基于分析的引擎进行的 2 次独立剂量计算。
TPS 预测与剂量测量和独立剂量计算引擎的吸收剂量和 RBE 加权剂量计算结果一致。在水中扩展布拉格峰处,剂量测量与 TPS 计算之间的平均差异为 0.2%。针对吸收剂量和 RBE 加权剂量,将首例患者治疗的 TPS 预测与独立引擎进行验证,结果显示在靶区差异在 2%以内,在研究的关键感兴趣区域最大偏差为 3.5%。
氦离子束治疗已成功调试并投入临床使用。通过对 RayStation TPS 的吸收剂量和 RBE 加权剂量预测进行全面验证,我们采用了第一个用于扫描传输的氦离子治疗的临床 TPS,为 HIT 的首批氦离子患者治疗制定了计划。