Suppr超能文献

使用贝叶斯回归改进振动模式解释

Improving Vibrational Mode Interpretation Using Bayesian Regression.

作者信息

Teixeira Filipe, Cordeiro M Natália D S

机构信息

LAQV-REQUIMTE , Faculty of Sciences of the University of Porto , Rua do Campo Alegre , 4169-007 Porto , Portugal.

出版信息

J Chem Theory Comput. 2019 Jan 8;15(1):456-470. doi: 10.1021/acs.jctc.8b00439. Epub 2018 Dec 19.

Abstract

To streamline the interpretation of vibrational spectra, this work introduces the use of Bayesian linear regression with automatic relevance determination as a viable approach to decompose the atomic motions along any vibrational mode as a weighted combination of displacements along chemically meaningful internal coordinates. This novel approach denominated vibrational mode automatic relevance determination (VMARD) is presented and compared with the well-established potential energy decomposition (PED) scheme. Good agreement is generally attained between the two methods. VMARD returns a decomposition of the atomic displacement using only a small number of internal coordinates, thus aiding the interpretation of the vibrational spectra. Moreover, the results show that the VMARD descriptions are resilient toward the addition of additional internal coordinates, achieving a concise description of the vibrational modes despite the use of redundant internal coordinates. Potential applications of VMARD involving the gathering of physical insights on the atomic motions along the reaction coordinate at transition state structures, as well as the improvement of theoretically predicted vibrational frequencies, are also presented under a proof-of-concept perspective.

摘要

为了简化振动光谱的解释,本工作引入了具有自动相关性确定的贝叶斯线性回归方法,作为一种可行的途径,将沿任何振动模式的原子运动分解为沿化学上有意义的内坐标位移的加权组合。本文提出了这种名为振动模式自动相关性确定(VMARD)的新方法,并与成熟的势能分解(PED)方案进行了比较。两种方法总体上取得了良好的一致性。VMARD仅使用少量内坐标就能返回原子位移的分解结果,从而有助于振动光谱的解释。此外,结果表明,VMARD描述对添加额外的内坐标具有弹性,尽管使用了冗余的内坐标,但仍能简洁地描述振动模式。从概念验证的角度,还介绍了VMARD的潜在应用,包括获取关于过渡态结构沿反应坐标的原子运动的物理见解,以及改进理论预测的振动频率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验