Suppr超能文献

纳米催化剂增强和光热增强的肿瘤特异性顺序纳米催化治疗在近红外 I 区和近红外 II 区生物窗口。

Nanocatalysts-Augmented and Photothermal-Enhanced Tumor-Specific Sequential Nanocatalytic Therapy in Both NIR-I and NIR-II Biowindows.

机构信息

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.

Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.

出版信息

Adv Mater. 2019 Feb;31(5):e1805919. doi: 10.1002/adma.201805919. Epub 2018 Dec 9.

Abstract

The tumor microenvironment (TME) has been increasingly recognized as a crucial contributor to tumorigenesis. Based on the unique TME for achieving tumor-specific therapy, here a novel concept of photothermal-enhanced sequential nanocatalytic therapy in both NIR-I and NIR-II biowindows is proposed, which innovatively changes the condition of nanocatalytic Fenton reaction for production of highly efficient hydroxyl radicals (•OH) and consequently suppressing the tumor growth. Evidence suggests that glucose plays a vital role in powering cancer progression. Encouraged by the oxidation of glucose to gluconic acid and H O by glucose oxidase (GOD), an Fe O /GOD-functionalized polypyrrole (PPy)-based composite nanocatalyst is constructed to achieve diagnostic imaging-guided, photothermal-enhanced, and TME-specific sequential nanocatalytic tumor therapy. The consumption of intratumoral glucose by GOD leads to the in situ elevation of the H O level, and the integrated Fe O component then catalyzes H O into highly toxic •OH to efficiently induce cancer-cell death. Importantly, the high photothermal-conversion efficiency (66.4% in NIR-II biowindow) of the PPy component elevates the local tumor temperature in both NIR-I and NIR-II biowindows to substaintially accelerate and improve the nanocatalytic disproportionation degree of H O for enhancing the nanocatalytic-therapeutic efficacy, which successfully achieves a remarkable synergistic anticancer outcome with minimal side effects.

摘要

肿瘤微环境 (TME) 已被越来越多地认为是肿瘤发生的关键因素。基于实现肿瘤特异性治疗的独特 TME,本文提出了一种新的概念,即近红外-I 和近红外-II 生物窗口中的光热增强序贯纳米催化治疗,这一概念创新性地改变了纳米催化芬顿反应产生高效羟基自由基 (•OH) 的条件,从而抑制肿瘤生长。有证据表明,葡萄糖在促进癌症进展方面起着至关重要的作用。受葡萄糖氧化酶 (GOD) 将葡萄糖氧化为葡萄糖酸和 H2O2 的启发,构建了一种 Fe3O4/GOD 功能化聚吡咯 (PPy) 基复合纳米催化剂,以实现诊断成像引导、光热增强和 TME 特异性序贯纳米催化肿瘤治疗。GOD 消耗肿瘤内葡萄糖会导致 H2O2 水平原位升高,而整合的 Fe3O4 组分随后将 H2O2 催化成剧毒的•OH,以有效地诱导癌细胞死亡。重要的是,PPy 组分的高光热转换效率(在近红外-II 生物窗口中为 66.4%)将局部肿瘤温度提高到近红外-I 和近红外-II 生物窗口,从而大大加速和改善 H2O2 的纳米催化歧化程度,以增强纳米催化治疗效果,从而成功实现了协同抗癌效果,副作用极小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验