Suppr超能文献

基于夜明珠的余辉磷光体在癌症诊断中的生物成像及前景

Bioimaging and prospects of night pearls-based persistence phosphors in cancer diagnostics.

作者信息

Shang Ruipu, Yang Feifei, Gao Ge, Luo Yu, You Hongpeng, Dong Lile

机构信息

Key Laboratory of Rare Earths Chinese Academy of Sciences Ganjiang Innovation Academy Chinese Academy of Sciences Ganzhou China.

University of Science and Technology of China Hefei China.

出版信息

Exploration (Beijing). 2024 Jan 23;4(4):20230124. doi: 10.1002/EXP.20230124. eCollection 2024 Aug.

Abstract

Inorganic persistent phosphors feature great potential for cancer diagnosis due to the long luminescence lifetime, low background scattering, and minimal autofluorescence. With the prominent advantages of near-infrared light, such as deep penetration, high resolution, low autofluorescence, and tissue absorption, persistent phosphors can be used for deep bioimaging. We focus on highlighting inorganic persistent phosphors, emphasizing the synthesis methods and applications in cancer diagnostics. Typical synthetic methods such as the high-temperature solid state, thermal decomposition, hydrothermal/solvothermal, and template methods are proposed to obtain small-size phosphors for biological organisms. The luminescence mechanisms of inorganic persistent phosphors with different excitation are discussed and effective matrixes including galliumate, germanium, aluminate, and fluoride are explored. Finally, the current directions where inorganic persistent phosphors can continue to be optimized and how to further overcome the challenges in cancer diagnosis are summarized.

摘要

无机长效磷光体由于其长发光寿命、低背景散射和最小自荧光,在癌症诊断方面具有巨大潜力。凭借近红外光的突出优势,如深穿透、高分辨率、低自荧光和组织吸收,长效磷光体可用于深度生物成像。我们专注于突出无机长效磷光体,强调其合成方法及其在癌症诊断中的应用。提出了典型的合成方法,如高温固态法、热分解法、水热/溶剂热法和模板法,以获得适用于生物有机体的小尺寸磷光体。讨论了不同激发方式下无机长效磷光体的发光机制,并探索了包括镓酸盐、锗、铝酸盐和氟化物在内的有效基质。最后,总结了无机长效磷光体可继续优化的当前方向以及如何进一步克服癌症诊断中的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0642/11335470/7d81c79a6802/EXP2-4-20230124-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验