NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa, Italy.
Nanotechnology. 2019 Mar 1;30(9):094003. doi: 10.1088/1361-6528/aaf7ab. Epub 2018 Dec 11.
The steady-state chemical composition of the In/Au alloy nanoparticles (NPs) during isothermal growth of Au-assisted InAs and InP nanowires (NWs) is different for the two materials. Therefore, when switching from one material to the other, to grow axial NW heterostructures, transient effects dominate during the time period of the NP reconfiguration. As a consequence, the precise control of the thickness of thin InP and InAs segments, which is fundamental for the realization of quantum dot (QD) structures and superlattices, can be very challenging. In this work, we present a study of the thickness/diameter dependence of two InP barriers and of the InAs short segment in between (QD), inserted into InAs NWs grown by means of Au-assisted chemical beam epitaxy. We found a broad variability of the InP segment thickness within the same as-grown sample, resulting in InAs NWs with asymmetric and non-homogeneous InP barriers. We explain the results by considering the NP reconfiguration dynamics which dominates at the early stages of the growth in both growth sequences. Moreover, we propose a strategy to control the growth rate and the dynamics of the barriers, by forcing the NP reconfiguration before starting the InP growth. This allows for the realization of InAs/InP NW heterostructures of different diameters, all having symmetric InP barriers with well controlled thickness, which are crucial parameters for the realization of advanced electronic quantum devices.
在金辅助的砷化铟和磷化铟纳米线(NW)的等温生长过程中,合金纳米粒子(NPs)的稳态化学成分对于这两种材料而言是不同的。因此,当从一种材料切换到另一种材料以生长轴向 NW 异质结构时,在 NP 重新配置的时间段内,瞬态效应占据主导地位。因此,对于实现量子点(QD)结构和超晶格至关重要的薄磷化铟和砷化铟段的精确厚度控制可能非常具有挑战性。在这项工作中,我们研究了通过金辅助化学束外延生长的砷化铟 NW 中插入的两个磷化铟势垒和砷化铟短段(QD)的厚度/直径依赖性。我们发现同一生长样品中磷化铟段厚度存在广泛的可变性,导致砷化铟 NW 具有不对称和不均匀的磷化铟势垒。我们通过考虑在两种生长序列的早期生长中占主导地位的 NP 重新配置动力学来解释结果。此外,我们提出了一种通过在开始磷化铟生长之前强制 NP 重新配置来控制势垒生长速率和动力学的策略。这允许实现具有不同直径的不同直径的砷化铟/磷化铟 NW 异质结构,所有这些异质结构都具有对称且厚度可控的磷化铟势垒,这是实现先进电子量子器件的关键参数。