Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, The Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland.
Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, The Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland.
Cytokine. 2019 Jan;113:185-194. doi: 10.1016/j.cyto.2018.07.003. Epub 2018 Jul 6.
A growing body of evidence indicates that brain cytokines are involved in the control of the cardiovascular system. Tumour necrosis factor (TNF) is an archetypal cytokine, which exerts its proinflammatory actions via type 1 receptor (TNFR1). Interleukin 10 (IL-10) plays a critical anti-inflammatory role by binding to its receptor (IL-10Ra). The orchestrated inflammatory response is largely dependent on an intricate balance between proinflammatory and anti-inflammatory cytokines and expression of their receptors.
In the study we evaluated the expression of the cytokines and their receptors in the brains of spontaneously hypertensive (SH) and normotensive Wistar-Kyoto (WKY) rats, and how the cytokines affect arterial blood pressure.
In SH and WKY rats we recorded systolic blood pressure with tail cuff method and measured concentration of TNF, IL-10, TNFR1, and IL-10Ra in the serum, the brainstem, and the hypothalamus; we also measured serum concentrations of copeptin, a surrogate of vasopressin release, angiotensin II and norepinephrine. We immunostained brainstem sections for TNFR1, IL-10Ra, neurons, astrocytes and microglia for confocal imaging. In urethane anaesthetized SH and WKY rats, we invasively recorded blood pressure response to intracerebroventricular (IVC) infusion of TNF or IL-10. We also pharmacologically evaluated baroreflex with phenylephrine and chemoreflex with cyanide in SH and WKY rats.
Compared to WKY rats, SH rats had: (1) higher blood pressure; (2) blunted baroreflex and augmented peripheral chemoreflex; (3) greater pressor response to ICV infused TNF and greater hypotensive response to ICV infused IL-10; (4) higher concentration of TNF in the ventral and dorsal aspects of the medulla oblongata; (5) higher expression of TNFR1 in the dorsal medulla; (6) higher concentration of IL-10 in both aspects of the medulla; (7) lower expression of IL-10Ra in the dorsal medulla. Confocal imaging showed co-localization of TNFR1 and IL-10Ra with neurons, astrocytes and microglia in both SH and WKY rats. The concentration of the cytokines and their receptors were significantly higher in the brain than in the serum. There were no significant differences in the concentration of the cytokines and their receptors in the hypothalamic region and in the serum between SH and WKY rats. Serum concentrations of norepinephrine, angiotensin II and copeptin were similar between SH and WKY rats.
Taken together, these findings suggest the presence of a potent milieu for effective TNF signalling in the brainstem, which is associated with the hypertensive phenotype and enhanced hemodynamic response to intrabrain administration of the cytokines. In addition, we hypothesize that the increased IL-10 concentration in the brainstem is a compensatory mechanism for the upregulated TNF system.
越来越多的证据表明,大脑细胞因子参与了心血管系统的控制。肿瘤坏死因子 (TNF) 是一种典型的细胞因子,通过 1 型受体 (TNFR1) 发挥其促炎作用。白细胞介素 10 (IL-10) 通过与其受体 (IL-10Ra) 结合发挥关键的抗炎作用。协调的炎症反应在很大程度上依赖于促炎细胞因子和抗炎细胞因子及其受体的表达之间的精细平衡。
在这项研究中,我们评估了自发性高血压 (SH) 和正常血压 Wistar-Kyoto (WKY) 大鼠大脑中细胞因子及其受体的表达,以及细胞因子如何影响动脉血压。
在 SH 和 WKY 大鼠中,我们使用尾袖法记录收缩压,并测量血清、脑干和下丘脑 TNF、IL-10、TNFR1 和 IL-10Ra 的浓度;我们还测量了血管加压素释放的替代物 copeptin、血管紧张素 II 和去甲肾上腺素的血清浓度。我们对脑干切片进行 TNFR1、IL-10Ra、神经元、星形胶质细胞和小胶质细胞的免疫染色,用于共聚焦成像。在乌拉坦麻醉的 SH 和 WKY 大鼠中,我们通过脑室内 (IVC) 输注 TNF 或 IL-10 来记录血压反应。我们还通过苯肾上腺素评估了 SH 和 WKY 大鼠的压力反射,通过氰化物评估了化学反射。
与 WKY 大鼠相比,SH 大鼠具有:(1) 更高的血压;(2) 压力反射减弱和外周化学反射增强;(3) 对 ICV 输注 TNF 的加压反应更大,对 ICV 输注 IL-10 的降压反应更大;(4) 延髓腹侧和背侧 TNF 浓度更高;(5) 背侧延髓中 TNFR1 表达更高;(6) 两种情况下的 IL-10Ra 浓度较低;(7) 背侧延髓中 IL-10Ra 表达降低。共聚焦成像显示,在 SH 和 WKY 大鼠中,TNFR1 和 IL-10Ra 与神经元、星形胶质细胞和小胶质细胞共定位。与血清相比,大脑中的细胞因子及其受体浓度明显更高。SH 和 WKY 大鼠之间下丘脑区域和血清中细胞因子及其受体的浓度没有显着差异。SH 和 WKY 大鼠的血清去甲肾上腺素、血管紧张素 II 和 copeptin 浓度相似。
综上所述,这些发现表明脑干中存在有效的 TNF 信号转导的有效环境,这与高血压表型和增强对大脑内细胞因子给药的血流动力学反应有关。此外,我们假设脑干中增加的 IL-10 浓度是上调 TNF 系统的补偿机制。