Suppr超能文献

肝病毒诱导的钠牛磺胆酸共转运多肽中的单个适应性突变决定病毒种属特异性。

A Single Adaptive Mutation in Sodium Taurocholate Cotransporting Polypeptide Induced by Hepadnaviruses Determines Virus Species Specificity.

机构信息

Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.

Department of Analytical Biochemistry, Meiji Pharmaceutical University, Kiyose, Japan.

出版信息

J Virol. 2019 Feb 19;93(5). doi: 10.1128/JVI.01432-18. Print 2019 Mar 1.

Abstract

Hepatitis B virus (HBV) and its hepadnavirus relatives infect a wide range of vertebrates, from fish to human. Hepadnaviruses and their hosts have a long history of acquiring adaptive mutations. However, there are no reports providing direct molecular evidence for such a coevolutionary "arms race" between hepadnaviruses and their hosts. Here, we present evidence suggesting that the adaptive evolution of the sodium taurocholate cotransporting polypeptide (NTCP), an HBV receptor, has been influenced by virus infection. Evolutionary analysis of the NTCP-encoding genes from 20 mammals showed that most NTCP residues are highly conserved among species, exhibiting evolution under negative selection (/ ratio [ratio of nonsynonymous to synonymous evolutionary changes] of <1); this observation implies that the evolution of NTCP is restricted by maintaining its original protein function. However, 0.7% of NTCP amino acid residues exhibit rapid evolution under positive selection (/ ratio of >1). Notably, a substitution at amino acid (aa) 158, a positively selected residue, converting the human NTCP to a monkey-type sequence abrogated the capacity to support HBV infection; conversely, a substitution at this residue converting the monkey Ntcp to the human sequence was sufficient to confer HBV susceptibility. Together, these observations suggested a close association of the aa 158 positive selection with the pressure by virus infection. Moreover, the aa 158 sequence determined attachment of the HBV envelope protein to the host cell, demonstrating the mechanism whereby HBV infection would create positive selection at this NTCP residue. In summary, we provide the first evidence in agreement with the function of hepadnavirus as a driver for inducing adaptive mutation in host receptor. HBV and its hepadnavirus relatives infect a wide range of vertebrates, with a long infectious history (hundreds of millions of years). Such a long history generally allows adaptive mutations in hosts to escape from infection while simultaneously allowing adaptive mutations in viruses to overcome host barriers. However, there is no published molecular evidence for such a coevolutionary arms race between hepadnaviruses and hosts. In the present study, we performed coevolutionary phylogenetic analysis between hepadnaviruses and the sodium taurocholate cotransporting polypeptide (NTCP), an HBV receptor, combined with virological experimental assays for investigating the biological significance of NTCP sequence variation. Our data provide the first molecular evidence supporting that HBV-related hepadnaviruses drive adaptive evolution in the NTCP sequence, including a mechanistic explanation of how NTCP mutations determine host viral susceptibility. Our novel insights enhance our understanding of how hepadnaviruses evolved with their hosts, permitting the acquisition of strong species specificity.

摘要

乙型肝炎病毒 (HBV) 及其正肝病毒属的亲缘病毒感染范围广泛,从鱼类到人类等多种脊椎动物。正肝病毒及其宿主具有长期获得适应性突变的历史。然而,目前尚无报道提供正肝病毒与其宿主之间这种协同进化“军备竞赛”的直接分子证据。在这里,我们提供的证据表明,乙型肝炎病毒受体钠离子牛磺胆酸共转运多肽 (NTCP) 的适应性进化受到病毒感染的影响。对来自 20 种哺乳动物的 NTCP 编码基因进行进化分析表明,大多数 NTCP 残基在物种间高度保守,表现出负选择下的进化 (/比值[非同义进化变化与同义进化变化的比值] <1);这一观察结果表明,NTCP 的进化受到维持其原始蛋白质功能的限制。然而,0.7%的 NTCP 氨基酸残基在正选择下快速进化 (/比值>1)。值得注意的是,第 158 位氨基酸残基的取代,将人类 NTCP 转变为猴型序列,可消除支持 HBV 感染的能力;相反,将猴 Ntcp 中的这一位点突变为人类序列足以赋予 HBV 易感性。总之,这些观察结果表明,aa158 的正选择与病毒感染的压力密切相关。此外,aa158 序列决定了 HBV 包膜蛋白与宿主细胞的附着,证明了 HBV 感染会在该 NTCP 残基上产生正选择的机制。总之,我们提供了第一个与正肝病毒作为诱导宿主受体适应性突变驱动因素的功能相一致的证据。HBV 及其正肝病毒属的亲缘病毒感染范围广泛,具有很长的感染史(数亿年)。这种长期的历史通常允许宿主中的适应性突变逃避感染,同时允许病毒中的适应性突变克服宿主障碍。然而,目前尚无关于正肝病毒与宿主之间这种协同进化“军备竞赛”的发表分子证据。在本研究中,我们对乙型肝炎病毒及其钠离子牛磺胆酸共转运多肽 (NTCP)(HBV 受体)之间进行了协同进化的系统发育分析,同时结合病毒学实验检测,研究了 NTCP 序列变异的生物学意义。我们的数据提供了第一个支持 HBV 相关正肝病毒驱动 NTCP 序列适应性进化的分子证据,包括解释 NTCP 突变如何决定宿主病毒易感性的机制。我们的新见解增强了我们对正肝病毒与其宿主共同进化的理解,使宿主获得了强大的物种特异性。

相似文献

4
A novel hepatitis B virus species discovered in capuchin monkeys sheds new light on the evolution of primate hepadnaviruses.
J Hepatol. 2018 Jun;68(6):1114-1122. doi: 10.1016/j.jhep.2018.01.029. Epub 2018 Feb 8.
5
Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes.
Gastroenterology. 2014 Apr;146(4):1070-83. doi: 10.1053/j.gastro.2013.12.024. Epub 2013 Dec 19.
6
NTCP Oligomerization Occurs Downstream of the NTCP-EGFR Interaction during Hepatitis B Virus Internalization.
J Virol. 2021 Nov 23;95(24):e0093821. doi: 10.1128/JVI.00938-21. Epub 2021 Oct 6.
7
From DCPD to NTCP: the long journey towards identifying a functional hepatitis B virus receptor.
Clin Mol Hepatol. 2015 Sep;21(3):193-9. doi: 10.3350/cmh.2015.21.3.193. Epub 2015 Sep 30.
9
Woodchuck sodium taurocholate cotransporting polypeptide supports low-level hepatitis B and D virus entry.
Virology. 2017 May;505:1-11. doi: 10.1016/j.virol.2017.02.006. Epub 2017 Feb 14.

引用本文的文献

1
Screening of different species reveals cat hepatocytes support HBV infection.
PLoS Pathog. 2025 Aug 4;21(8):e1013390. doi: 10.1371/journal.ppat.1013390. eCollection 2025 Aug.
2
Hepatitis B and D virus entry.
Nat Rev Microbiol. 2025 May;23(5):318-331. doi: 10.1038/s41579-024-01121-2. Epub 2024 Nov 21.
3
Structural basis for hepatitis B virus restriction by a viral receptor homologue.
Nat Commun. 2024 Oct 25;15(1):9241. doi: 10.1038/s41467-024-53533-6.
4
The feasibility of establishing a hamster model for HBV infection: evidence.
mBio. 2024 Nov 13;15(11):e0261524. doi: 10.1128/mbio.02615-24. Epub 2024 Sep 27.
5
Structure of antiviral drug bulevirtide bound to hepatitis B and D virus receptor protein NTCP.
Nat Commun. 2024 Mar 20;15(1):2476. doi: 10.1038/s41467-024-46706-w.
6
Targeted viral adaptation generates a simian-tropic hepatitis B virus that infects marmoset cells.
Nat Commun. 2023 Jun 16;14(1):3582. doi: 10.1038/s41467-023-39148-3.
8
Structural insights into the HBV receptor and bile acid transporter NTCP.
Nature. 2022 Jun;606(7916):1027-1031. doi: 10.1038/s41586-022-04857-0. Epub 2022 May 17.
9
Structure of the bile acid transporter and HBV receptor NTCP.
Nature. 2022 Jun;606(7916):1021-1026. doi: 10.1038/s41586-022-04845-4. Epub 2022 May 17.
10
Regulation of the HBV Entry Receptor NTCP and its Potential in Hepatitis B Treatment.
Front Mol Biosci. 2022 Apr 12;9:879817. doi: 10.3389/fmolb.2022.879817. eCollection 2022.

本文引用的文献

2
Smc5/6 Antagonism by HBx Is an Evolutionarily Conserved Function of Hepatitis B Virus Infection in Mammals.
J Virol. 2018 Jul 31;92(16). doi: 10.1128/JVI.00769-18. Print 2018 Aug 15.
3
A novel hepatitis B virus species discovered in capuchin monkeys sheds new light on the evolution of primate hepadnaviruses.
J Hepatol. 2018 Jun;68(6):1114-1122. doi: 10.1016/j.jhep.2018.01.029. Epub 2018 Feb 8.
5
A research agenda for curing chronic hepatitis B virus infection.
Hepatology. 2018 Mar;67(3):1127-1131. doi: 10.1002/hep.29509. Epub 2018 Jan 24.
6
Deciphering the Origin and Evolution of Hepatitis B Viruses by Means of a Family of Non-enveloped Fish Viruses.
Cell Host Microbe. 2017 Sep 13;22(3):387-399.e6. doi: 10.1016/j.chom.2017.07.019. Epub 2017 Aug 31.
7
A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors.
EMBO Mol Med. 2017 Sep;9(9):1314-1325. doi: 10.15252/emmm.201707726.
8
SMS: Smart Model Selection in PhyML.
Mol Biol Evol. 2017 Sep 1;34(9):2422-2424. doi: 10.1093/molbev/msx149.
10
Cyclosporin derivatives inhibit hepatitis B virus entry without interfering with NTCP transporter activity.
J Hepatol. 2017 Apr;66(4):685-692. doi: 10.1016/j.jhep.2016.11.009. Epub 2016 Nov 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验