Suppr超能文献

集中式无人机 Mesh 网络放置方案:一种多目标进化算法方法。

Centralized Unmanned Aerial Vehicle Mesh Network Placement Scheme: A Multi-Objective Evolutionary Algorithm Approach.

机构信息

Instituto Superior Técnico-Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.

INESC-ID, R. Alves Redol 9, CP 1000-100 Lisboa, Portugal.

出版信息

Sensors (Basel). 2018 Dec 11;18(12):4387. doi: 10.3390/s18124387.

Abstract

In the past, Unmanned Aerial Vehicles (UAVs) were mostly used in military operations to prevent pilot losses. Nowadays, the fast technological evolution has enabled the production of a class of cost-effective UAVs that can service a plethora of public and civilian applications, especially when configured to work cooperatively to accomplish a task. However, designing a communication network among the UAVs is a challenging task. In this article, we propose a centralized UAV placement strategy, where UAVs are used as flying access points forming a mesh network, providing connectivity to ground nodes deployed in a target area. The geographical placement of UAVs is optimized based on a Multi-Objective Evolutionary Algorithm (MOEA). The goal of the proposed scheme is to cover all ground nodes using a minimum number of UAVs, while maximizing the fulfillment of their data rate requirements. The UAVs can employ different data rates depending on the channel conditions, which are expressed by the Signal-to-Noise-Ratio (SNR). In this work, the elitist Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is used to find a set of optimal positions to place UAVs, given the positions of the ground nodes. We evaluate the trade-off between the number of UAVs used to cover the target area and the data rate requirement of the ground nodes. Simulation results show that the proposed algorithm can optimize the UAV placement given the requirement and the positions of the ground nodes in the geographical area.

摘要

在过去,无人机 (UAV) 主要用于军事行动以防止飞行员损失。如今,快速的技术发展使得生产出一类具有成本效益的无人机成为可能,这些无人机可以服务于大量的公共和民用应用,特别是在配置为协同工作以完成任务时。然而,设计无人机之间的通信网络是一项具有挑战性的任务。在本文中,我们提出了一种集中式无人机放置策略,其中无人机用作形成网状网络的飞行接入点,为部署在目标区域内的地面节点提供连接。基于多目标进化算法 (MOEA) 对无人机的地理放置进行了优化。该方案的目标是使用最少数量的无人机覆盖所有地面节点,同时最大限度地满足它们的数据速率要求。无人机可以根据信道条件(由信噪比 (SNR) 表示)使用不同的数据速率。在这项工作中,精英非支配排序遗传算法 II (NSGA-II) 用于找到一组最佳的无人机放置位置,给定地面节点的位置。我们评估了用于覆盖目标区域的无人机数量与地面节点的数据速率要求之间的权衡。仿真结果表明,给定地理区域中地面节点的要求和位置,所提出的算法可以优化无人机的放置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7725/6308967/65e8b0d65704/sensors-18-04387-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验