Suppr超能文献

基于网络分析的方法来描述散发性 Creutzfeldt-Jakob 病患者脑电图中的周期性尖波复合物。

A network analysis based approach to characterizing periodic sharp wave complexes in electroencephalograms of patients with sporadic CJD.

机构信息

DIIES, University "Mediterranea" of Reggio Calabria, Italy.

DII, Polytechnic University of Marche, Italy.

出版信息

Int J Med Inform. 2019 Jan;121:19-29. doi: 10.1016/j.ijmedinf.2018.11.003. Epub 2018 Nov 14.

Abstract

Creutzfeldt-Jacob disease (CJD) is a rapidly progressive, uniformly fatal transmissible spongiform encephalopathy. Sporadic CJD (sCJD) is the most common form of CJD. Electroencephalography (EEG) is one of the main methods to perform clinical diagnosis of CJD, mainly because of periodic sharp wave complexes (PSWCs). In this paper, we propose a network analysis based approach to characterizing PSWCs in EEGs of patients with sCJD. Our approach associates a network with each EEG at disposal and defines a new numerical coefficient and some network motifs, which characterize the presence of PSWCs in an EEG tracing. The new coefficient, called connection coefficient, and the detected network motifs are capable of characterizing the EEG tracing segments with PSWCs. Furthermore, network motifs are able to detect what are the most active and/or connected brain areas in the tracing segments with PSWCs. The results obtained show that, analogously to what happens for other neurological diseases, network analysis can be successfully exploited to investigate sCJD.

摘要

克雅氏病(CJD)是一种快速进展、普遍致命的传染性海绵状脑病。散发性克雅氏病(sCJD)是 CJD 最常见的形式。脑电图(EEG)是进行 CJD 临床诊断的主要方法之一,主要是因为存在周期性尖波复合波(PSWCs)。在本文中,我们提出了一种基于网络分析的方法来描述 sCJD 患者脑电图中的 PSWCs。我们的方法为每个 EEG 分配一个网络,并定义了一个新的数值系数和一些网络基元,这些系数和基元可以描述 EEG 描记中 PSWCs 的存在。新的系数称为连接系数,以及检测到的网络基元能够描述具有 PSWCs 的 EEG 描记片段。此外,网络基元能够检测到在具有 PSWCs 的描记片段中哪些是最活跃和/或连接的大脑区域。所获得的结果表明,与其他神经疾病类似,网络分析可以成功地用于研究 sCJD。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验