Hussein Maytham, Han Mei-Ling, Zhu Yan, Schneider-Futschik Elena K, Hu Xiaohan, Zhou Qi Tony, Lin Yu-Wei, Anderson Dovile, Creek Darren J, Hoyer Daniel, Li Jian, Velkov Tony
Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville 3010, VIC, Australia.
Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia.
Comput Struct Biotechnol J. 2018 Nov 10;16:587-599. doi: 10.1016/j.csbj.2018.11.001. eCollection 2018.
Polymyxins are amongst the most important antibiotics in modern medicine, in recent times their clinical utility has been overshadowed by nosocomial outbreaks of polymyxin resistant MDR Gram-negative 'superbugs'. An effective strategy to surmount polymyxin resistance is combination therapy with FDA-approved non-antibiotic drugs. Herein we used untargeted metabolomics to investigate the mechanism(s) of synergy between polymyxin B and the selective estrogen receptor modulator (SERM) tamoxifen against a polymyxin-resistant MDR cystic fibrosis (CF) FADDI-PA006 isolate (polymyxin B MIC=8 mg/L , it is an MDR polymyxin resistant isolated from the lungs of a CF patient). The metabolome of FADDI-PA006 was profiled at 15 min, 1 and 4 h following treatment with polymyxin B (2 mg/L), tamoxifen (8 mg/L) either as monotherapy or in combination. At 15 min, the combination treatment induced a marked decrease in lipids, primarily fatty acid and glycerophospholipid metabolites that are involved in the biosynthesis of bacterial membranes. In line with the polymyxin-resistant status of this strain, at 1 h, both polymyxin B and tamoxifen monotherapies produced little effect on bacterial metabolism. In contrast to the combination which induced extensive reduction (≥ 1.0-log2-fold, p ≤ 0.05; FDR ≤ 0.05) in the levels of essential intermediates involved in cell envelope biosynthesis. Overall, these novel findings demonstrate that the primary mechanisms underlying the synergistic bactericidal effect of the combination against the polymyxin-resistant CF isolate FADDI-PA006 involves a disruption of the cell envelope biogenesis and an inhibition of aminoarabinose LPS modifications that confer polymyxin resistance.
多粘菌素是现代医学中最重要的抗生素之一,近年来,耐多粘菌素的多重耐药革兰氏阴性“超级细菌”在医院内的爆发使它们的临床效用黯然失色。克服多粘菌素耐药性的一种有效策略是与美国食品药品监督管理局(FDA)批准的非抗生素药物联合治疗。在此,我们使用非靶向代谢组学来研究多粘菌素B与选择性雌激素受体调节剂(SERM)他莫昔芬联合使用对一株耐多粘菌素的多重耐药囊性纤维化(CF)菌株FADDI-PA006(多粘菌素B的最低抑菌浓度[MIC]=8 mg/L,它是从一名CF患者的肺部分离出的一株耐多粘菌素的多重耐药菌株)的协同作用机制。在用多粘菌素B(2 mg/L)、他莫昔芬(8 mg/L)单药治疗或联合治疗后,在15分钟、1小时和4小时对FADDI-PA006的代谢组进行了分析。在15分钟时,联合治疗使脂质显著减少,主要是参与细菌膜生物合成的脂肪酸和甘油磷脂代谢物。与该菌株的耐多粘菌素状态一致,在1小时时,多粘菌素B和他莫昔芬单药治疗对细菌代谢几乎没有影响。相比之下,联合治疗使参与细胞壁生物合成的必需中间体水平大幅降低(≥1.0-log2倍,p≤0.05;错误发现率[FDR]≤0.05)。总体而言,这些新发现表明,联合用药对耐多粘菌素的CF菌株FADDI-PA006产生协同杀菌作用的主要机制包括破坏细胞壁生物合成以及抑制赋予多粘菌素耐药性的氨基阿拉伯糖脂多糖修饰。