Suppr超能文献

成功的抗 PD-1 癌症免疫疗法需要涉及细胞因子 IFN-γ 和 IL-12 的 T 细胞-树突状细胞串扰。

Successful Anti-PD-1 Cancer Immunotherapy Requires T Cell-Dendritic Cell Crosstalk Involving the Cytokines IFN-γ and IL-12.

机构信息

Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA; Graduate Program in Immunology, Harvard Medical School, Boston, MA 02115, USA.

Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA; Department of Radiology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA.

出版信息

Immunity. 2018 Dec 18;49(6):1148-1161.e7. doi: 10.1016/j.immuni.2018.09.024. Epub 2018 Dec 11.

Abstract

Anti-PD-1 immune checkpoint blockers can induce sustained clinical responses in cancer but how they function in vivo remains incompletely understood. Here, we combined intravital real-time imaging with single-cell RNA sequencing analysis and mouse models to uncover anti-PD-1 pharmacodynamics directly within tumors. We showed that effective antitumor responses required a subset of tumor-infiltrating dendritic cells (DCs), which produced interleukin 12 (IL-12). These DCs did not bind anti-PD-1 but produced IL-12 upon sensing interferon γ (IFN-γ) that was released from neighboring T cells. In turn, DC-derived IL-12 stimulated antitumor T cell immunity. These findings suggest that full-fledged activation of antitumor T cells by anti-PD-1 is not direct, but rather involves T cell:DC crosstalk and is licensed by IFN-γ and IL-12. Furthermore, we found that activating the non-canonical NF-κB transcription factor pathway amplified IL-12-producing DCs and sensitized tumors to anti-PD-1 treatment, suggesting a therapeutic strategy to improve responses to checkpoint blockade.

摘要

抗 PD-1 免疫检查点抑制剂可在癌症中诱导持续的临床反应,但它们在体内的作用机制仍不完全清楚。在这里,我们结合体内实时成像与单细胞 RNA 测序分析以及小鼠模型,直接在肿瘤内揭示抗 PD-1 的药效动力学。我们表明,有效的抗肿瘤反应需要浸润肿瘤的树突状细胞(DC)亚群,这些细胞产生白细胞介素 12(IL-12)。这些 DC 不与抗 PD-1 结合,但在感应到来自相邻 T 细胞释放的干扰素 γ(IFN-γ)时会产生 IL-12。反过来,DC 衍生的 IL-12 刺激抗肿瘤 T 细胞免疫。这些发现表明,抗 PD-1 对抗肿瘤 T 细胞的完全激活不是直接的,而是涉及 T 细胞:DC 串扰,并由 IFN-γ 和 IL-12 授权。此外,我们发现激活非经典 NF-κB 转录因子途径可放大产生 IL-12 的 DC,并使肿瘤对抗 PD-1 治疗敏感,这提示了一种改善对检查点阻断反应的治疗策略。

相似文献

1
Successful Anti-PD-1 Cancer Immunotherapy Requires T Cell-Dendritic Cell Crosstalk Involving the Cytokines IFN-γ and IL-12.
Immunity. 2018 Dec 18;49(6):1148-1161.e7. doi: 10.1016/j.immuni.2018.09.024. Epub 2018 Dec 11.
2
Enhanced anti-tumor effects of the PD-1 blockade combined with a highly absorptive form of curcumin targeting STAT3.
Cancer Sci. 2020 Dec;111(12):4326-4335. doi: 10.1111/cas.14675. Epub 2020 Oct 20.
4
A novel approach to induce human DCs from monocytes by triggering 4-1BBL reverse signaling.
Int Immunol. 2009 Oct;21(10):1135-44. doi: 10.1093/intimm/dxp077. Epub 2009 Aug 14.
5
Clonal Deletion of Tumor-Specific T Cells by Interferon-γ Confers Therapeutic Resistance to Combination Immune Checkpoint Blockade.
Immunity. 2019 Feb 19;50(2):477-492.e8. doi: 10.1016/j.immuni.2019.01.006. Epub 2019 Feb 5.
6
Blockage of immune checkpoint molecules increases T-cell priming potential of dendritic cell vaccine.
Immunology. 2020 Jan;159(1):75-87. doi: 10.1111/imm.13126. Epub 2019 Oct 24.
7
Amlexanox enhances the antitumor effect of anti-PD-1 antibody.
Biochem Biophys Res Commun. 2021 Jun 30;560:1-6. doi: 10.1016/j.bbrc.2021.04.126. Epub 2021 May 6.
9
Antibodies Against Immune Checkpoint Molecules Restore Functions of Tumor-Infiltrating T Cells in Hepatocellular Carcinomas.
Gastroenterology. 2017 Oct;153(4):1107-1119.e10. doi: 10.1053/j.gastro.2017.06.017. Epub 2017 Jun 23.
10
IL-27 Negatively Regulates Tip-DC Development during Infection.
mBio. 2021 Feb 16;12(1):e03385-20. doi: 10.1128/mBio.03385-20.

引用本文的文献

1
From trash to treasure: tumor draining lymph nodes as a multi-omics goldmine in cancer therapy.
Front Oncol. 2025 Aug 19;15:1636942. doi: 10.3389/fonc.2025.1636942. eCollection 2025.
2
Boosting Dendritic Cell Function in Cancer.
Cancer Med. 2025 Sep;14(17):e71062. doi: 10.1002/cam4.71062.
4
Empowering hypoxia to convert cold tumors into hot tumors for breast cancer immunotherapy.
Cell Death Discov. 2025 Aug 14;11(1):381. doi: 10.1038/s41420-025-02682-8.
5
Novel IL13RA2-targeted immunocytokines exhibit superior antitumor activities.
Acta Pharmacol Sin. 2025 Aug 12. doi: 10.1038/s41401-025-01611-w.
6
Emerging IO checkpoints in gastrointestinal oncology.
Front Immunol. 2025 Jul 24;16:1575713. doi: 10.3389/fimmu.2025.1575713. eCollection 2025.
7
Neoadjuvant immunotherapy for resectable primary liver cancer (Review).
Oncol Lett. 2025 Jul 23;30(4):458. doi: 10.3892/ol.2025.15204. eCollection 2025 Oct.
10
Exosomal Mediates Immune Evasion in Triple-Negative Breast Cancer by Suppressing Dendritic Cell Activation via .
Iran J Public Health. 2025 Jun;54(6):1252-1262. doi: 10.18502/ijph.v54i6.18903.

本文引用的文献

1
Recording the wild lives of immune cells.
Sci Immunol. 2018 Sep 7;3(27). doi: 10.1126/sciimmunol.aaq0491.
2
Rapid activation of tumor-associated macrophages boosts preexisting tumor immunity.
J Exp Med. 2018 Mar 5;215(3):859-876. doi: 10.1084/jem.20171440. Epub 2018 Feb 7.
3
TIM-3 Regulates CD103 Dendritic Cell Function and Response to Chemotherapy in Breast Cancer.
Cancer Cell. 2018 Jan 8;33(1):60-74.e6. doi: 10.1016/j.ccell.2017.11.019.
4
The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients.
Science. 2018 Jan 5;359(6371):104-108. doi: 10.1126/science.aao3290.
5
SPRING: a kinetic interface for visualizing high dimensional single-cell expression data.
Bioinformatics. 2018 Apr 1;34(7):1246-1248. doi: 10.1093/bioinformatics/btx792.
6
MHC-I Genotype Restricts the Oncogenic Mutational Landscape.
Cell. 2017 Nov 30;171(6):1272-1283.e15. doi: 10.1016/j.cell.2017.09.050. Epub 2017 Oct 26.
7
Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution.
Cell. 2017 Nov 30;171(6):1259-1271.e11. doi: 10.1016/j.cell.2017.10.001. Epub 2017 Oct 26.
8
Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors.
Science. 2018 Jan 5;359(6371):91-97. doi: 10.1126/science.aan3706. Epub 2017 Nov 2.
9
Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab.
Cell. 2017 Nov 2;171(4):934-949.e16. doi: 10.1016/j.cell.2017.09.028. Epub 2017 Oct 12.
10
Interleukin (IL)-12 and IL-23 and Their Conflicting Roles in Cancer.
Cold Spring Harb Perspect Biol. 2018 Jul 2;10(7):a028530. doi: 10.1101/cshperspect.a028530.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验