BASF SE, Experimental Toxicology and Ecology, Carl Bosch Straße 38, 67056, Ludwigshafen, Germany.
Georgia Southern University, Statesboro, 30458, USA.
Arch Toxicol. 2019 Feb;93(2):401-416. doi: 10.1007/s00204-018-2372-z. Epub 2018 Dec 14.
While in vitro testing is used to identify hazards of chemicals, nominal in vitro assay concentrations may misrepresent potential in vivo effects and do not provide dose-response data which can be used for a risk assessment. We used reverse dosimetry to compare in vitro effect concentrations-to-in vivo doses causing toxic effects related to endocrine disruption. Ten compounds (acetaminophen, bisphenol A, caffeine, 17α-ethinylestradiol, fenarimol, flutamide, genistein, ketoconazole, methyltestosterone, and trenbolone) have been tested in the yeast estrogen screening (YES) or yeast androgen-screening (YAS) assays for estrogen and androgen receptor binding, as well as the H295R assay (OECD test guideline no. 456) for potential interaction with steroidogenesis. With the assumption of comparable concentration-response ratios of these effects in the applied in vitro systems and the in vivo environment, the lowest observed effect concentrations from these assays were extrapolated to oral doses (LOELs) by reverse dosimetry. For extrapolation, an eight-compartment Physiologically Based Toxicokinetic (PBTK) rat model based on in vitro and in silico input data was used. The predicted LOEL was then compared to the LOEL actually observed in corresponding in vivo studies (YES/YAS assay versus uterotrophic or Hershberger assay and steroidogenesis assay versus pubertal assay or generation studies). This evaluation resulted in 6 out of 10 compounds for which the predicted LOELs were in the same order of magnitude as the actual in vivo LOELs. For four compounds, the predicted LOELs differed by more than tenfold from the actual in vivo LOELs. In conclusion, these data demonstrate the applicability of reverse dosimetry using a simple PBTK model to serve in vitro-in silico-based risk assessment, but also identified cases and test substance were the applied methods are insufficient.
虽然体外测试可用于识别化学物质的危害,但名义上的体外分析浓度可能无法真实反映潜在的体内效应,也无法提供可用于风险评估的剂量-反应数据。我们使用反向剂量测定法比较了与内分泌干扰相关的毒性效应的体外效应浓度与体内剂量。十种化合物(对乙酰氨基酚、双酚 A、咖啡因、17α-乙炔雌二醇、fenarimol、氟他胺、染料木黄酮、酮康唑、甲基睾酮和 trenbolone)已在酵母雌激素筛选(YES)或酵母雄激素筛选(YAS)测定中进行了测试,以评估雌激素和雄激素受体结合,以及 H295R 测定(OECD 测试指南编号 456),以评估其与类固醇生成的潜在相互作用。假设这些效应在应用的体外系统和体内环境中的浓度-反应比值相当,通过反向剂量测定法将这些测定中的最低观察到的效应浓度外推到口服剂量(LOEL)。为了进行外推,使用基于体外和计算输入数据的八室生理基于毒代动力学(PBTK)大鼠模型。然后将预测的 LOEL 与相应的体内研究中实际观察到的 LOEL 进行比较(YES/YAS 测定与子宫增重或 Hershberger 测定,以及类固醇生成测定与青春期测定或世代研究)。这种评估导致 10 种化合物中有 6 种预测的 LOEL 与实际体内 LOEL 处于同一数量级。对于 4 种化合物,预测的 LOEL 与实际体内 LOEL 相差超过 10 倍。总之,这些数据表明使用简单的 PBTK 模型进行反向剂量测定法可用于基于体外-计算的风险评估,但也确定了应用方法不足的情况和测试物质。