Suppr超能文献

如何利用 LI-RADS 的 LR-M 特征提高钆塞酸增强 MRI 诊断混合细胞型肝癌?

How to utilize LR-M features of the LI-RADS to improve the diagnosis of combined hepatocellular-cholangiocarcinoma on gadoxetate-enhanced MRI?

机构信息

Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.

出版信息

Eur Radiol. 2019 May;29(5):2408-2416. doi: 10.1007/s00330-018-5893-1. Epub 2018 Dec 14.

Abstract

OBJECTIVES

To investigate the diagnostic accuracy of each LR-M feature defined in version 2017 of the Liver Imaging Reporting and Data System (LI-RADS) and determine the optimal LR-M feature for differentiating combined hepatocellular-cholangiocarcinoma (cHCC-CCA) and hepatocellular carcinoma (HCC) on gadoxetate-enhanced magnetic resonance imaging (MRI).

METHODS

Ninety-nine patients with pathologically proven cHCC-CCA (n = 33) or HCC (n = 66) after surgery were identified. Two radiologists retrospectively assessed preoperative gadoxetate-enhanced MRI for features favoring non-HCC malignancies (LR-M features) according to LI-RADS version 2017. Multivariate logistic regression analysis was performed to determine the independent differential features. The sensitivity and specificity for diagnosing cHCC-CCA were calculated for each LR-M feature.

RESULTS

Targetoid appearance showed the highest sensitivity (75.8%, 95% confidence interval [CI] 60.6%, 87.3%) to correctly identify cHCC-CCA as LR-M. At least one LR-M feature was observed in 31 (93.9%) patients with cHCC-CCA and 34 (51.5%) patients with HCC. The sensitivity and specificity for diagnosing cHCC-CCA using the presence of any one of the LR-M features were 93.9% (95% CI 80.7, 98.9) and 48.5% (95% CI 41.9, 51.0), respectively. The presence of three LR-M features yielded the highest diagnostic accuracy of 80.8% (95% CI 72.1, 86.1) with a reduced sensitivity of 54.5% (95% CI 41.4, 62.5).

CONCLUSION

The majority of cHCC-CCA cases can be properly categorized as LR-M when any one of the LR-M features defined in the LI-RADS version 2017 is used as a determiner. However, approximately half of HCC cases also show at least one LR-M feature.

KEY POINTS

• Targetoid appearance, including rim APHE, peripheral "washout" appearance, and delayed central enhancement, was the LR-M feature that identified cHCC-CCA as a non-HCC malignancy with the highest sensitivity. • Most cHCC-CCA cases can be properly categorized as LR-M when the presence of any one of the LR-M features was used as the determiner. • Approximately half of HCC cases also showed at least one LR-M feature.

摘要

目的

探讨 2017 版肝脏影像报告和数据系统(LI-RADS)中每个 LR-M 特征的诊断准确性,并确定用于区分钆塞酸增强磁共振成像(MRI)中合并肝细胞癌-胆管细胞癌(cHCC-CCA)和肝细胞癌(HCC)的最佳 LR-M 特征。

方法

对 99 例经病理证实的 cHCC-CCA(n=33)或 HCC(n=66)术后患者进行识别。两名放射科医生根据 LI-RADS 2017 版回顾性评估术前钆塞酸增强 MRI 的非 HCC 恶性肿瘤倾向特征(LR-M 特征)。采用多变量逻辑回归分析确定独立的鉴别特征。计算每个 LR-M 特征诊断 cHCC-CCA 的灵敏度和特异性。

结果

类圆形外观(LR-M)的诊断 cHCC-CCA 的敏感性最高(75.8%,95%置信区间[CI]:60.6%,87.3%)。31 例(93.9%)cHCC-CCA 患者和 34 例(51.5%)HCC 患者至少存在一种 LR-M 特征。使用任何一种 LR-M 特征存在来诊断 cHCC-CCA 的灵敏度和特异性分别为 93.9%(95%CI:80.7,98.9)和 48.5%(95%CI:41.9,51.0)。存在三种 LR-M 特征时,诊断准确率最高,为 80.8%(95%CI:72.1,86.1),但敏感性降低至 54.5%(95%CI:41.4,62.5)。

结论

当使用 LI-RADS 2017 版中定义的任何一种 LR-M 特征作为判断标准时,大多数 cHCC-CCA 病例可以正确归类为 LR-M。然而,大约一半的 HCC 病例也表现出至少一种 LR-M 特征。

重点

  • 类圆形外观(包括边缘 APHE、外周“洗脱”外观和延迟中央强化)是确定非 HCC 恶性肿瘤的 LR-M 特征,其诊断 cHCC-CCA 的敏感性最高。

  • 当使用任何一种 LR-M 特征作为判断标准时,大多数 cHCC-CCA 病例可以正确归类为 LR-M。

  • 大约一半的 HCC 病例也表现出至少一种 LR-M 特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验