文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于压力成像的患者三维身体姿势估计。

Patient 3D body pose estimation from pressure imaging.

机构信息

Computer Aided Medical Procedures, Technische Universität München, Boltzmannstr 3, 85748, Garching, Germany.

出版信息

Int J Comput Assist Radiol Surg. 2019 Mar;14(3):517-524. doi: 10.1007/s11548-018-1895-3. Epub 2018 Dec 14.


DOI:10.1007/s11548-018-1895-3
PMID:30552647
Abstract

PURPOSE: In-bed motion monitoring has become of great interest for a variety of clinical applications. Image-based approaches could be seen as a natural non-intrusive approach for this purpose; however, video devices require special challenging settings for a clinical environment. We propose to estimate the patient's posture from pressure sensors' data mapped to images. METHODS: We introduce a deep learning method to retrieve human poses from pressure sensors data. In addition, we present a second approach that is based on a hashing content-retrieval approach. RESULTS: Our results show good performance with both presented methods even in poses where the subject has minimal contact with the sensors. Moreover, we show that deep learning approaches could be used in this medical application despite the limited amount of available training data. Our ConvNet approach provides an overall posture even when the patient has less contact with the mattress surface. In addition, we show that both methods could be used in real-time patient monitoring. CONCLUSIONS: We have provided two methods to successfully perform real-time in-bed patient pose estimation, which is robust to different sizes of patient and activities. Furthermore, it can provide an overall posture even when the patient has less contact with the mattress surface.

摘要

目的:卧床运动监测在各种临床应用中引起了极大的兴趣。基于图像的方法可以被视为实现这一目标的一种自然的非侵入性方法;然而,视频设备需要特殊的挑战性设置才能在临床环境中使用。我们提出了一种从映射到图像的压力传感器数据中估计患者姿势的深度学习方法。

方法:我们引入了一种从压力传感器数据中检索人体姿势的深度学习方法。此外,我们还提出了一种基于哈希内容检索方法的第二种方法。

结果:我们的结果表明,即使在受试者与传感器接触很少的姿势下,这两种方法都表现出了良好的性能。此外,我们表明,尽管可用的训练数据有限,但深度学习方法仍可用于这种医学应用。我们的 ConvNet 方法甚至在患者与床垫表面接触较少时也能提供整体姿势。此外,我们还表明,这两种方法都可以用于实时患者监测。

结论:我们提供了两种方法来成功地执行实时卧床患者姿势估计,该方法对不同大小的患者和活动具有鲁棒性。此外,即使患者与床垫表面的接触较少,它也可以提供整体姿势。

相似文献

[1]
Patient 3D body pose estimation from pressure imaging.

Int J Comput Assist Radiol Surg. 2018-12-14

[2]
Markerless estimation of patient orientation, posture and pose using range and pressure imaging : for automatic patient setup and scanner initialization in tomographic imaging.

Int J Comput Assist Radiol Surg. 2012-5-15

[3]
A deep learning approach for pose estimation from volumetric OCT data.

Med Image Anal. 2018-3-10

[4]
HeadFusion: 360 Head Pose Tracking Combining 3D Morphable Model and 3D Reconstruction.

IEEE Trans Pattern Anal Mach Intell. 2018-5-29

[5]
A model-based approach for estimating human 3D poses in static images.

IEEE Trans Pattern Anal Mach Intell. 2006-6

[6]
SIFT algorithm-based 3D pose estimation of femur.

Biomed Mater Eng. 2014

[7]
3D Human Pose Machines with Self-Supervised Learning.

IEEE Trans Pattern Anal Mach Intell. 2020-5

[8]
Time Coherent Full-Body Poses Estimated Using Only Five Inertial Sensors: Deep versus Shallow Learning.

Sensors (Basel). 2019-8-27

[9]
Robust 3D Human Pose Estimation from Single Images or Video Sequences.

IEEE Trans Pattern Anal Mach Intell. 2018-4-19

[10]
Spatio-temporal deep learning methods for motion estimation using 4D OCT image data.

Int J Comput Assist Radiol Surg. 2020-5-22

引用本文的文献

[1]
Using Inertial Measurement Units and Machine Learning to Classify Body Positions of Adults in a Hospital Bed.

Sensors (Basel). 2025-1-16

[2]
Smart Floor Mats for a Health Monitoring System Based on Textile Pressure Sensing: Development and Usability Study.

JMIR Form Res. 2023-8-7

[3]
Yoga Pose Estimation and Feedback Generation Using Deep Learning.

Comput Intell Neurosci. 2022

[4]
Smart-Sleeve: A Wearable Textile Pressure Sensor Array for Human Activity Recognition.

Sensors (Basel). 2022-2-22

[5]
Accurate and efficient pulmonary CT imaging workflow for COVID-19 patients by the combination of intelligent guided robot and automatic positioning technology.

Intell Med. 2021-5

[6]
Seeing under the cover with a 3D U-Net: point cloud-based weight estimation of covered patients.

Int J Comput Assist Radiol Surg. 2021-12

[7]
Longitudinal In-Bed Pressure Signals Decomposition and Gradients Analysis for Pressure Injury Monitoring.

Sensors (Basel). 2021-6-25

[8]
Artificial intelligence (AI) for medical imaging to combat coronavirus disease (COVID-19): a detailed review with direction for future research.

Artif Intell Rev. 2022

[9]
A system for bedside assistance that integrates a robotic bed and a mobile manipulator.

PLoS One. 2019-10-16

本文引用的文献

[1]
In-bed posture classification using deep autoencoders.

Annu Int Conf IEEE Eng Med Biol Soc. 2016-8

[2]
Monitoring patients in hospital beds using unobtrusive depth sensors.

Annu Int Conf IEEE Eng Med Biol Soc. 2014

[3]
Towards large-scale histopathological image analysis: hashing-based image retrieval.

IEEE Trans Med Imaging. 2014-10-9

[4]
Iterative quantization: a Procrustean approach to learning binary codes for large-scale image retrieval.

IEEE Trans Pattern Anal Mach Intell. 2013-12

[5]
Markerless estimation of patient orientation, posture and pose using range and pressure imaging : for automatic patient setup and scanner initialization in tomographic imaging.

Int J Comput Assist Radiol Surg. 2012-5-15

[6]
Fast time-of-flight camera based surface registration for radiotherapy patient positioning.

Med Phys. 2012-1

[7]
Fall detection with multiple cameras: an occlusion-resistant method based on 3-D silhouette vertical distribution.

IEEE Trans Inf Technol Biomed. 2011-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索