Computer Aided Medical Procedures, Technische Universität München, Boltzmannstr 3, 85748, Garching, Germany.
Int J Comput Assist Radiol Surg. 2019 Mar;14(3):517-524. doi: 10.1007/s11548-018-1895-3. Epub 2018 Dec 14.
PURPOSE: In-bed motion monitoring has become of great interest for a variety of clinical applications. Image-based approaches could be seen as a natural non-intrusive approach for this purpose; however, video devices require special challenging settings for a clinical environment. We propose to estimate the patient's posture from pressure sensors' data mapped to images. METHODS: We introduce a deep learning method to retrieve human poses from pressure sensors data. In addition, we present a second approach that is based on a hashing content-retrieval approach. RESULTS: Our results show good performance with both presented methods even in poses where the subject has minimal contact with the sensors. Moreover, we show that deep learning approaches could be used in this medical application despite the limited amount of available training data. Our ConvNet approach provides an overall posture even when the patient has less contact with the mattress surface. In addition, we show that both methods could be used in real-time patient monitoring. CONCLUSIONS: We have provided two methods to successfully perform real-time in-bed patient pose estimation, which is robust to different sizes of patient and activities. Furthermore, it can provide an overall posture even when the patient has less contact with the mattress surface.
目的:卧床运动监测在各种临床应用中引起了极大的兴趣。基于图像的方法可以被视为实现这一目标的一种自然的非侵入性方法;然而,视频设备需要特殊的挑战性设置才能在临床环境中使用。我们提出了一种从映射到图像的压力传感器数据中估计患者姿势的深度学习方法。
方法:我们引入了一种从压力传感器数据中检索人体姿势的深度学习方法。此外,我们还提出了一种基于哈希内容检索方法的第二种方法。
结果:我们的结果表明,即使在受试者与传感器接触很少的姿势下,这两种方法都表现出了良好的性能。此外,我们表明,尽管可用的训练数据有限,但深度学习方法仍可用于这种医学应用。我们的 ConvNet 方法甚至在患者与床垫表面接触较少时也能提供整体姿势。此外,我们还表明,这两种方法都可以用于实时患者监测。
结论:我们提供了两种方法来成功地执行实时卧床患者姿势估计,该方法对不同大小的患者和活动具有鲁棒性。此外,即使患者与床垫表面的接触较少,它也可以提供整体姿势。
Int J Comput Assist Radiol Surg. 2018-12-14
Med Image Anal. 2018-3-10
IEEE Trans Pattern Anal Mach Intell. 2018-5-29
IEEE Trans Pattern Anal Mach Intell. 2006-6
Biomed Mater Eng. 2014
IEEE Trans Pattern Anal Mach Intell. 2020-5
Sensors (Basel). 2019-8-27
IEEE Trans Pattern Anal Mach Intell. 2018-4-19
Int J Comput Assist Radiol Surg. 2020-5-22
Comput Intell Neurosci. 2022
Sensors (Basel). 2022-2-22
Int J Comput Assist Radiol Surg. 2021-12
Annu Int Conf IEEE Eng Med Biol Soc. 2016-8
Annu Int Conf IEEE Eng Med Biol Soc. 2014
IEEE Trans Med Imaging. 2014-10-9
IEEE Trans Pattern Anal Mach Intell. 2013-12
IEEE Trans Inf Technol Biomed. 2011-3