Institute of Medical Technology, Hamburg University of Technology, Hamburg, Germany.
Int J Comput Assist Radiol Surg. 2020 Jun;15(6):943-952. doi: 10.1007/s11548-020-02178-z. Epub 2020 May 22.
Localizing structures and estimating the motion of a specific target region are common problems for navigation during surgical interventions. Optical coherence tomography (OCT) is an imaging modality with a high spatial and temporal resolution that has been used for intraoperative imaging and also for motion estimation, for example, in the context of ophthalmic surgery or cochleostomy. Recently, motion estimation between a template and a moving OCT image has been studied with deep learning methods to overcome the shortcomings of conventional, feature-based methods.
We investigate whether using a temporal stream of OCT image volumes can improve deep learning-based motion estimation performance. For this purpose, we design and evaluate several 3D and 4D deep learning methods and we propose a new deep learning approach. Also, we propose a temporal regularization strategy at the model output.
Using a tissue dataset without additional markers, our deep learning methods using 4D data outperform previous approaches. The best performing 4D architecture achieves an correlation coefficient (aCC) of 98.58% compared to 85.0% of a previous 3D deep learning method. Also, our temporal regularization strategy at the output further improves 4D model performance to an aCC of 99.06%. In particular, our 4D method works well for larger motion and is robust toward image rotations and motion distortions.
We propose 4D spatio-temporal deep learning for OCT-based motion estimation. On a tissue dataset, we find that using 4D information for the model input improves performance while maintaining reasonable inference times. Our regularization strategy demonstrates that additional temporal information is also beneficial at the model output.
在手术干预过程中,定位结构和估计特定目标区域的运动是导航中的常见问题。光学相干断层扫描(OCT)是一种具有高空间和时间分辨率的成像方式,已被用于术中成像,也用于运动估计,例如在眼科手术或耳蜗造口术中。最近,已经使用深度学习方法研究了模板和移动 OCT 图像之间的运动估计,以克服传统基于特征的方法的缺点。
我们研究了使用 OCT 图像体积的时间流是否可以提高基于深度学习的运动估计性能。为此,我们设计和评估了几种 3D 和 4D 深度学习方法,并提出了一种新的深度学习方法。此外,我们在模型输出处提出了一种时间正则化策略。
在没有额外标记的组织数据集上,我们使用 4D 数据的深度学习方法优于以前的方法。表现最好的 4D 架构与以前的 3D 深度学习方法的 85.0%相比,相关性系数(aCC)达到 98.58%。此外,我们在模型输出处的时间正则化策略进一步提高了 4D 模型的性能,达到 aCC 的 99.06%。特别是,我们的 4D 方法在较大的运动下效果良好,并且对图像旋转和运动失真具有鲁棒性。
我们提出了基于 OCT 的运动估计的 4D 时空深度学习。在组织数据集上,我们发现使用 4D 信息作为模型输入可以提高性能,同时保持合理的推断时间。我们的正则化策略表明,在模型输出处还可以利用额外的时间信息。