Suppr超能文献

基于 FDG PET 数据的体素 Cox 回归分析轻度认知障碍向阿尔茨海默病转化的预后。

Prognosis of conversion of mild cognitive impairment to Alzheimer's dementia by voxel-wise Cox regression based on FDG PET data.

机构信息

Department of Nuclear Medicine, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany.

Department of Nuclear Medicine, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany.

出版信息

Neuroimage Clin. 2019;21:101637. doi: 10.1016/j.nicl.2018.101637. Epub 2018 Dec 10.

Abstract

AIM

The value of F-fluorodeoxyglucose (FDG) PET for the prognosis of conversion from mild cognitive impairment (MCI) to Alzheimer's dementia (AD) is controversial. In the present work, the identification of cerebral metabolic patterns with significant prognostic value for conversion of MCI patients to AD is investigated with voxel-based Cox regression, which in contrast to common categorical comparisons also utilizes time information.

METHODS

FDG PET data of 544 MCI patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were randomly split into two equally-sized datasets (training and test). Within a median follow-up duration of 47 months (95% CI: 46-48 months) 181 patients developed AD. In the training dataset, voxel-wise Cox regressions were used to identify regions associated with conversion of MCI to AD. These were compared to regions identified by a classical group comparison (analysis of covariance (ANCOVA) with statistical parametric mapping (SPM) 8) between converters and non-converters (both adjusted for apolipoprotein E (APOE) genotype, mini-mental state examination (MMSE) score, age, sex and education). In the test dataset, normalized FDG uptake within significant brain regions from voxel-wise Cox- and ANCOVA analyses (Cox- and ANCOVA- regions of interest (ROI), respectively) and clinical variables APOE status, MMSE score and education were tested in different Cox models (adjusted for age, sex) including: (1) only clinical variables, (2) only normalized FDG uptake in ANCOVA-ROI, (3) only normalized FDG uptake from Cox-ROI, (4) clinical variables plus FDG uptake in ANCOVA-ROI, (5) clinical variables plus FDG uptake from Cox-ROI.

RESULTS

Conversion-related regions with relative hypometabolism comprised parts of the temporo-parietal and posterior cingulate cortex/precuneus for voxel-wise ANCOVA, plus frontal regions for voxel-wise Cox regression (both p < .01, false discovery rate (FDR) corrected). The clinical-only model (1) and the models based on normalized FDG uptake from Cox-ROI only (2) and ANCOVA-ROI only (3) all significantly predicted conversion to AD (Wald Test (WT): p < .001). The clinical model (1) was significantly improved by adding imaging information in model (4) (Akaike information criterion (AIC) relative likelihood (RL) (1) vs (4): RL < 0.018). There were no significant differences between models (2) and (3), as well as (4) and (5).

CONCLUSIONS

Voxel-wise Cox regression identifies conversion-related patterns of cerebral glucose metabolism, but is not superior to classical group contrasts in this regard. With imaging information from both FDG PET patterns, the prediction of conversion to AD was improved.

摘要

目的

氟代脱氧葡萄糖(FDG)正电子发射断层扫描(PET)在预测轻度认知障碍(MCI)向阿尔茨海默病(AD)转化的预后中的价值存在争议。本研究采用基于体素的 Cox 回归来鉴定对 MCI 患者向 AD 转化具有显著预后价值的脑代谢模式,与常见的分类比较相比,这种方法还利用了时间信息。

方法

ADNI 数据库中 544 例 MCI 患者的 FDG PET 数据随机分为两个大小相等的数据集(训练和测试)。在中位数为 47 个月(95%CI:46-48 个月)的随访期间,181 例患者发展为 AD。在训练数据集中,使用基于体素的 Cox 回归来识别与 MCI 向 AD 转化相关的区域。这些区域与通过经典组比较(转换器和非转换器之间的协方差分析(ANCOVA)与统计参数映射(SPM)8)确定的区域进行比较(均调整载脂蛋白 E(APOE)基因型、简易精神状态检查(MMSE)评分、年龄、性别和教育)。在测试数据集中,对 Cox 分析(ANCOVA)中具有显著脑区的归一化 FDG 摄取量(基于体素的 Cox-和 ANCOVA-感兴趣区(ROI))和临床变量 APOE 状态、MMSE 评分和教育进行了不同的 Cox 模型测试(调整年龄、性别),包括:(1)仅临床变量,(2)ANCOVA-ROI 中的仅归一化 FDG 摄取,(3)仅 Cox-ROI 中的归一化 FDG 摄取,(4)临床变量加上 ANCOVA-ROI 中的 FDG 摄取,(5)临床变量加上 Cox-ROI 中的 FDG 摄取。

结果

基于体素的 ANCOVA 显示,与转换相关的相对低代谢区域包括颞顶叶和后扣带回/楔前叶的一部分,以及基于体素的 Cox 回归的额区(均 p<0.01,经 FDR 校正)。仅临床变量的模型(1)和仅基于 Cox-ROI 中 FDG 摄取的模型(2)和仅基于 ANCOVA-ROI 中 FDG 摄取的模型(3)均能显著预测 AD 的转化(Wald 检验(WT):p<0.001)。添加模型(4)中的成像信息后,临床模型(1)得到了显著改善(Akaike 信息准则(AIC)相对似然(RL)(1)与(4):RL<0.018)。模型(2)和(3)之间以及(4)和(5)之间没有显著差异。

结论

基于体素的 Cox 回归可以识别与转化相关的脑葡萄糖代谢模式,但在这方面并不优于经典的组间对比。通过 FDG PET 模式的影像学信息,AD 转化的预测得到了改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8a4/6411907/f9da462b6639/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验