Suppr超能文献

基于 FDG PET 的自动分析作为阿尔茨海默病痴呆单个体预测和检测工具。

Automated analysis of FDG PET as a tool for single-subject probabilistic prediction and detection of Alzheimer's disease dementia.

机构信息

Department of Nuclear Medicine, Clínica Universidad de Navarra, Avenida Pio XII 36, 31008 Pamplona, Spain.

出版信息

Eur J Nucl Med Mol Imaging. 2013 Sep;40(9):1394-405. doi: 10.1007/s00259-013-2458-z. Epub 2013 May 29.

Abstract

PURPOSE

To introduce, evaluate and validate a voxel-based analysis method of ¹⁸F-FDG PET imaging for determining the probability of Alzheimer's disease (AD) in a particular individual.

METHODS

The subject groups for model derivation comprised 80 healthy subjects (HS), 36 patients with mild cognitive impairment (MCI) who converted to AD dementia within 18 months, 85 non-converter MCI patients who did not convert within 24 months, and 67 AD dementia patients with baseline FDG PET scan were recruited from the AD Neuroimaging Initiative (ADNI) database. Additionally, baseline FDG PET scans from 20 HS, 27 MCI and 21 AD dementia patients from our institutional cohort were included for model validation. The analysis technique was designed on the basis of the AD-related hypometabolic convergence index adapted for our laboratory-specific context (AD-PET index), and combined in a multivariable model with age and gender for AD dementia detection (AD score). A logistic regression analysis of different cortical PET indexes and clinical variables was applied to search for relevant predictive factors to include in the multivariable model for the prediction of MCI conversion to AD dementia (AD-Conv score). The resultant scores were stratified into sixtiles for probabilistic diagnosis.

RESULTS

The area under the receiver operating characteristic curve (AUC) for the AD score detecting AD dementia in the ADNI database was 0.879, and the observed probability of AD dementia in the six defined groups ranged from 8% to 100% in a monotonic trend. For predicting MCI conversion to AD dementia, only the posterior cingulate index, Mini-Mental State Examination (MMSE) score and apolipoprotein E4 genotype (ApoE4) exhibited significant independent effects in the univariable and multivariable models. When only the latter two clinical variables were included in the model, the AUC was 0.742 (95% CI 0.646 - 0.838), but this increased to 0.804 (95% CI 0.714 - 0.894, bootstrap p=0.027) with the addition of the posterior cingulate index (AD-Conv score). Baseline clinical diagnosis of MCI showed 29.7% of converters after 18 months. The observed probability of conversion in relation to baseline AD-Conv score was 75% in the high probability group (sixtile 6), 34% in the medium probability group (merged sixtiles 4 and 5), 20% in the low probability group (sixtile 3) and 7.5% in the very low probability group (merged sixtiles 1 and 2). In the validation population, the AD score reached an AUC of 0.948 (95% CI 0.625 - 0.969) and the AD-Conv score reached 0.968 (95% CI 0.908 - 1.000), with AD patients and MCI converters included in the highest probability categories.

CONCLUSION

Posterior cingulate hypometabolism, when combined in a multivariable model with age and gender as well as MMSE score and ApoE4 data, improved the determination of the likelihood of patients with MCI converting to AD dementia compared with clinical variables alone. The probabilistic model described here provides a new tool that may aid in the clinical diagnosis of AD and MCI conversion.

摘要

目的

介绍、评估和验证基于 ¹⁸F-FDG PET 成像的体素分析方法,以确定特定个体患阿尔茨海默病(AD)的概率。

方法

模型推导的受试者组包括 80 名健康对照(HS)、36 名在 18 个月内转化为 AD 痴呆的轻度认知障碍(MCI)患者、85 名在 24 个月内未转化的非转化 MCI 患者,以及 67 名基线 FDG PET 扫描的 AD 痴呆患者,均来自 AD 神经影像学倡议(ADNI)数据库。此外,还纳入了我们机构队列中 20 名 HS、27 名 MCI 和 21 名 AD 痴呆患者的基线 FDG PET 扫描,用于模型验证。该分析技术是基于我们实验室特定背景下的 AD 相关低代谢收敛指数设计的(AD-PET 指数),并结合了年龄和性别多变量模型,用于 AD 痴呆的检测(AD 评分)。对不同皮质 PET 指数和临床变量进行逻辑回归分析,以寻找相关的预测因素,将其纳入用于预测 MCI 转化为 AD 痴呆的多变量模型(AD-Conv 评分)。所得分数按六等份进行概率诊断。

结果

ADNI 数据库中 AD 评分检测 AD 痴呆的受试者工作特征曲线(ROC)下面积(AUC)为 0.879,在六个定义的组中观察到的 AD 痴呆概率呈单调趋势,从 8%到 100%不等。对于预测 MCI 转化为 AD 痴呆,只有后扣带回指数、简易精神状态检查(MMSE)评分和载脂蛋白 E4 基因型(ApoE4)在单变量和多变量模型中表现出显著的独立影响。当仅纳入后两个临床变量时,AUC 为 0.742(95%CI 0.646-0.838),但在后扣带回指数(AD-Conv 评分)的加入下,AUC 增加至 0.804(95%CI 0.714-0.894,bootstrap p=0.027)。基线 MCI 临床诊断显示 18 个月后有 29.7%的转化者。与基线 AD-Conv 评分相关的转化率观察值在高概率组(第六等分)为 75%,中概率组(合并的第四和第五等分)为 34%,低概率组(第三等分)为 20%,非常低概率组(合并的第一和第二等分)为 7.5%。在验证人群中,AD 评分达到 AUC 为 0.948(95%CI 0.625-0.969),AD-Conv 评分达到 0.968(95%CI 0.908-1.000),AD 患者和 MCI 转化者均被归入最高概率类别。

结论

后扣带回代谢低下,当与年龄、性别以及 MMSE 评分和 ApoE4 数据结合在多变量模型中时,与单独的临床变量相比,可提高 MCI 患者转化为 AD 痴呆的可能性的确定。本文描述的概率模型提供了一种新的工具,可能有助于 AD 和 MCI 转化的临床诊断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验