Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD, USA.
Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Behesda, MD, USA.
Cell. 2019 Jan 10;176(1-2):213-226.e18. doi: 10.1016/j.cell.2018.11.026. Epub 2018 Dec 13.
Transcriptional regulation in metazoans occurs through long-range genomic contacts between enhancers and promoters, and most genes are transcribed in episodic "bursts" of RNA synthesis. To understand the relationship between these two phenomena and the dynamic regulation of genes in response to upstream signals, we describe the use of live-cell RNA imaging coupled with Hi-C measurements and dissect the endogenous regulation of the estrogen-responsive TFF1 gene. Although TFF1 is highly induced, we observe short active periods and variable inactive periods ranging from minutes to days. The heterogeneity in inactive times gives rise to the widely observed "noise" in human gene expression and explains the distribution of protein levels in human tissue. We derive a mathematical model of regulation that relates transcription, chromosome structure, and the cell's ability to sense changes in estrogen and predicts that hypervariability is largely dynamic and does not reflect a stable biological state.
真核生物的转录调控是通过增强子和启动子之间的长距离基因组接触来实现的,大多数基因以 RNA 合成的“突发”方式进行间歇性转录。为了了解这两种现象之间的关系以及基因对上游信号的动态调控,我们描述了使用活细胞 RNA 成像结合 Hi-C 测量的方法,并剖析了雌激素反应性 TFF1 基因的内源性调控。尽管 TFF1 被高度诱导,但我们观察到短的活跃期和可变的非活跃期,范围从几分钟到几天不等。非活跃时间的异质性导致了在人类基因表达中广泛观察到的“噪声”,并解释了人类组织中蛋白质水平的分布。我们推导出了一个调节模型,该模型将转录、染色体结构和细胞感知雌激素变化的能力联系起来,并预测超变异性在很大程度上是动态的,并不反映稳定的生物学状态。