Xu Yinqiu, Chen Pingping, Lin Xinhao, Yao Hequan, Lin Kejiang
Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China.
School of Pharmacy, China Pharmaceutical University, Nanjing, PR China.
Future Med Chem. 2019 Feb;11(3):165-177. doi: 10.4155/fmc-2018-0478. Epub 2018 Dec 17.
Descriptors of molecules are important in the discovery of lead compounds. Most of these descriptors are used to represent molecular structures, although structural formulas are the most intuitive representation. Convolutional neural networks (ConvNets) are effective for managing intuitive information. Convolutional neural networks (ConvNets) based on two-dimensional structural formulas were used for the preliminary screening of CDK4 inhibitors. After supervised learning of our homemade dataset, our models screened out ten approved drugs, including indocyanine green and candesartan cilexetil, with IC values of 2.0 and 5.2 μM, respectively. Depending only on intuitive information, the developed method was shown to be feasible, thus providing a new method of lead compound discovery.
分子描述符在先导化合物的发现中很重要。尽管结构式是最直观的表示方式,但这些描述符大多用于表示分子结构。卷积神经网络(ConvNets)在处理直观信息方面很有效。基于二维结构式的卷积神经网络(ConvNets)被用于CDK4抑制剂的初步筛选。在对我们自制的数据集进行监督学习后,我们的模型筛选出了十种已获批药物,包括吲哚菁绿和坎地沙坦酯,其IC值分别为2.0和5.2μM。仅依靠直观信息,所开发的方法被证明是可行的,从而提供了一种发现先导化合物的新方法。