Suppr超能文献

中国儿童急性淋巴细胞白血病或骨肉瘤患者大剂量甲氨蝶呤的群体药代动力学研究与个体化剂量调整。

Population Pharmacokinetic Study and Individual Dose Adjustments of High-Dose Methotrexate in Chinese Pediatric Patients With Acute Lymphoblastic Leukemia or Osteosarcoma.

机构信息

School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.

Division of Haematology, Oncology, and Bone Marrow Transplantation, Department of Paediatrics, Prince of Wales Hospital, Hong Kong.

出版信息

J Clin Pharmacol. 2019 Apr;59(4):566-577. doi: 10.1002/jcph.1349. Epub 2018 Dec 17.

Abstract

High-dose methotrexate (>0.5 g/m ) is among the first-line chemotherapeutic agents used in treating acute lymphoblastic leukemia (ALL) and osteosarcoma in children. Despite rapid hydration, leucovorin rescue, and routine therapeutic drug monitoring, severe toxicity is not uncommon. This study aimed at developing population pharmacokinetic (popPK) models of high-dose methotrexate for ALL and osteosarcoma and demonstrating the possibility and convenience of popPK model-based individual dose optimization using R and shiny, which is more accessible, efficient, and clinician-friendly than NONMEM. The final data set consists of 36 ALL (354 observations) and 16 osteosarcoma (585 observations) patients. Covariate model building and parameter estimations were done using NONMEM and Perl-speaks-NONMEM. Diagnostic Plots and bootstrapping validated the models' performance and stability. The dose optimizer developed based on the validated models can obtain identical individual parameter estimates as NONMEM. Compared to calling a NONMEM execution and reading its output, estimating individual parameters within R reduces the execution time from 8.7-12.8 seconds to 0.4-1.0 second. For each subject, the dose optimizer can recommend (1) an individualized optimal dose and (2) an individualized range of doses. For osteosarcoma, recommended optimal doses by the optimizer resemble the final doses at which the subjects were eventually stabilized. The dose optimizers developed demonstrated the potential to inform dose adjustments using a model-based, convenient, and efficient tool for high-dose methotrexate. Although the dose optimizer is not meant to replace clinical judgment, it provides the clinician with the individual pharmacokinetics perspective by recommending the (range of) optimal dose.

摘要

高剂量甲氨蝶呤(>0.5 g/m²)是治疗儿童急性淋巴细胞白血病(ALL)和骨肉瘤的一线化疗药物之一。尽管进行了快速水化、亚叶酸钙解救和常规治疗药物监测,但仍常发生严重毒性。本研究旨在建立高剂量甲氨蝶呤治疗 ALL 和骨肉瘤的群体药代动力学(popPK)模型,并展示使用 R 和 shiny 进行基于 popPK 模型的个体化剂量优化的可能性和便利性,这比 NONMEM 更易于访问、高效且对临床医生友好。最终数据集包括 36 例 ALL(354 个观察值)和 16 例骨肉瘤(585 个观察值)患者。使用 NONMEM 和 Perl-speaks-NONMEM 进行协变量模型构建和参数估计。诊断图和自举验证了模型的性能和稳定性。基于验证模型开发的剂量优化器可以获得与 NONMEM 相同的个体参数估计。与调用 NONMEM 执行并读取其输出相比,在 R 中估计个体参数将执行时间从 8.7-12.8 秒减少到 0.4-1.0 秒。对于每个患者,剂量优化器可以推荐(1)个体化最佳剂量和(2)个体化剂量范围。对于骨肉瘤,优化器推荐的最佳剂量类似于最终使患者稳定的剂量。开发的剂量优化器显示了使用基于模型的便捷和高效工具来调整高剂量甲氨蝶呤剂量的潜力。虽然剂量优化器并非旨在替代临床判断,但它通过推荐(范围)最佳剂量为临床医生提供了个体药代动力学的视角。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验