Suppr超能文献

关于压力诱导YN和ScN中弹性硬方向和软方向反转及其在含这些氮化物的纳米复合材料中的影响的从头算研究。

An Ab Initio Study of Pressure-Induced Reversal of Elastically Stiff and Soft Directions in YN and ScN and Its Effect in Nanocomposites Containing These Nitrides.

作者信息

Friák Martin, Kroupa Pavel, Holec David, Šob Mojmír

机构信息

Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, CZ-616 62 Brno, Czech Republic.

Department of Physics, Imperial College London, Prince Consort Road, London SW7 2BP, UK.

出版信息

Nanomaterials (Basel). 2018 Dec 14;8(12):1049. doi: 10.3390/nano8121049.

Abstract

Using quantum-mechanical calculations of second- and third-order elastic constants for YN and ScN with the rock-salt (B1) structure, we predict that these materials change the fundamental type of their elastic anisotropy by rather moderate hydrostatic pressures of a few GPa. In particular, YN with its zero-pressure elastic anisotropy characterized by the Zener anisotropy ratio A Z = 2 C 44 / ( C 11 - C 12 ) = 1.046 becomes elastically isotropic at the hydrostatic pressure of 1.2 GPa. The lowest values of the Young's modulus (so-called soft directions) change from 〈100〉 (in the zero-pressure state) to the 〈111〉 directions (for pressures above 1.2 GPa). It means that the crystallographic orientations of stiffest (also called hard) elastic response and those of the softest one are reversed when comparing the zero-pressure state with that for pressures above the critical level. Qualitatively, the same type of reversal is predicted for ScN with the zero-pressure value of the Zener anisotropy factor A Z = 1.117 and the critical pressure of about 6.5 GPa. Our predictions are based on both second-order and third-order elastic constants determined for the zero-pressure state but the anisotropy change is then verified by explicit calculations of the second-order elastic constants for compressed states. Both materials are semiconductors in the whole range of studied pressures. Our phonon calculations further reveal that the change in the type of the elastic anisotropy has only a minor impact on the vibrational properties. Our simulations of biaxially strained states of YN demonstrate that a similar change in the elastic anisotropy can be achieved also under stress conditions appearing, for example, in coherently co-existing nanocomposites such as superlattices. Finally, after selecting ScN and PdN (both in B1 rock-salt structure) as a pair of suitable candidate materials for such a superlattice (due to the similarity of their lattice parameters), our calculations of such a coherent nanocomposite results again in a reversed elastic anisotropy (compared with the zero-pressure state of ScN).

摘要

通过对具有岩盐(B1)结构的YN和ScN的二阶和三阶弹性常数进行量子力学计算,我们预测这些材料在几个吉帕斯卡的中等静水压力下会改变其弹性各向异性的基本类型。特别是,YN在零压力下的弹性各向异性由齐纳各向异性比(A_Z = 2C_{44}/(C_{11}-C_{12}) = 1.046)表征,在1.2吉帕斯卡的静水压力下变为弹性各向同性。杨氏模量的最低值(所谓的软方向)从〈100〉(在零压力状态下)变为〈111〉方向(对于高于1.2吉帕斯卡的压力)。这意味着,与临界压力以上的压力状态相比,在零压力状态下,最硬(也称为硬)弹性响应的晶体学取向与最软弹性响应的晶体学取向发生了反转。定性地说,对于齐纳各向异性因子(A_Z = 1.117)且临界压力约为6.5吉帕斯卡的ScN,预测会出现相同类型的反转。我们的预测基于零压力状态下确定的二阶和三阶弹性常数,但随后通过对压缩状态下的二阶弹性常数进行显式计算来验证各向异性的变化。在整个研究压力范围内,这两种材料都是半导体。我们的声子计算进一步表明,弹性各向异性类型的变化对振动特性只有轻微影响。我们对YN双轴应变状态的模拟表明,例如在相干共存的纳米复合材料(如超晶格)中出现的应力条件下,也可以实现弹性各向异性的类似变化。最后,在选择ScN和PdN(均为B1岩盐结构)作为这种超晶格的一对合适候选材料后(由于它们晶格参数的相似性),我们对这种相干纳米复合材料的计算再次得出弹性各向异性反转(与ScN的零压力状态相比)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/508f/6316261/4efb9b8bd27e/nanomaterials-08-01049-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验